python数据分析之金融欺诈行为检测
- 项目的思维导图
 - 数据分析与处理
- 声明所使用的库
`import numpy as np
import pandas as pd #panda主要用于处理结构化的数据列表,具有数据挖掘和数据分析,对数据进行清洗
import matplotlib.pyplot as plt #绘图工具
import matplotlib.cm as cm #色彩映射函数
import seaborn as sns #基于Matplotlib图形可视化的python包,便于做出统计图表
from sklearn import preprocessing #数据建模用的一个库
from scipy.stats import skew,boxcox
import os`
- 处理数据的结构
注意:代码中处理的是csv文件,这里为了简单明了,使用excel呈现出

关于数据列的解释如下
(1)step:对应现实中的时间单位(小时)
(2)type:转账类型
(3)amout:金额
(4)nameOrig: 转账发起人
(5)oldbalanceOrg: 转帐前发起人账户余额
(6)newbalanceOrig: 转账后发起人账户余额
(7)nameDest: 转账收款人
(8)oldbalanceDest: 转账前收款人账户余额,收款人是商户(M开头)时没有该项信息
(9)newbalanceDest: 转账后收款人余额,收款人是商户(M开头)时没有该项信息
(10)isFraud:该转账行为是欺诈行为
(11)isFlaggedFraud: 商业模型为了控制大额转账并且标记为非法操作,在这儿,非法操作是指转账金额超过20万。
- 读取文件
在代码所在的文件夹中创建一个新的文件夹,用于存放数据集
dataset_path='./pythonjinrong'
csvfile_path=os.path.join(dataset_path,'PS.csv')
#解压数据集
raw_data=pd.read_csv(csvfile_path)
- 统计数据集中的各转账类型的数量
print('转账类型记录统计:')
print(raw_data['type'].value_counts())
fig,ax=plt.subplots(1,1,figsize=(8,4))
raw_data['type'].value_counts().plot(kind='bar',title='Transaction Type',ax=ax,figsize=(8,4))
plt.show()

这篇博客详细介绍了如何运用Python进行金融欺诈行为的检测,包括数据预处理、特征分析、模型构建等方面。通过分析不同转账类型的欺诈行为,利用箱线图揭示了欺诈交易的特征,最后使用逻辑回归模型进行分类,并评估了模型性能。
最低0.47元/天 解锁文章

5693

被折叠的 条评论
为什么被折叠?



