python数据分析之金融欺诈行为检测

这篇博客详细介绍了如何运用Python进行金融欺诈行为的检测,包括数据预处理、特征分析、模型构建等方面。通过分析不同转账类型的欺诈行为,利用箱线图揭示了欺诈交易的特征,最后使用逻辑回归模型进行分类,并评估了模型性能。
摘要由CSDN通过智能技术生成

python数据分析之金融欺诈行为检测

  1. 项目的思维导图
    ![思维导图](https://img-blog.csdnimg.cn/20201018193015576.PNG?x-oss-
    process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDg3MTkwMw==,size_16,color_FFFFFF,t_70#pic_center)
  2. 数据分析与处理
  • 声明所使用的库
    `import numpy as np   
    import pandas as pd   #panda主要用于处理结构化的数据列表,具有数据挖掘和数据分析,对数据进行清洗
    import matplotlib.pyplot as plt    #绘图工具
    import matplotlib.cm as cm     #色彩映射函数
    import seaborn as sns    #基于Matplotlib图形可视化的python包,便于做出统计图表
    
    from sklearn import preprocessing    #数据建模用的一个库
    from scipy.stats import skew,boxcox
    import os`
  • 处理数据的结构
    注意:代码中处理的是csv文件,这里为了简单明了,使用excel呈现出
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/20201018195727579.png?x-oss-
    process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDg3MTkwMw==,size_16,color_FFFFFF,t_70#pic_center)

关于数据列的解释如下
(1)step:对应现实中的时间单位(小时)
(2)type:转账类型
(3)amout:金额
(4)nameOrig: 转账发起人
(5)oldbalanceOrg: 转帐前发起人账户余额
(6)newbalanceOrig: 转账后发起人账户余额
(7)nameDest: 转账收款人
(8)oldbalanceDest: 转账前收款人账户余额,收款人是商户(M开头)时没有该项信息
(9)newbalanceDest: 转账后收款人余额,收款人是商户(M开头)时没有该项信息
(10)isFraud:该转账行为是欺诈行为
(11)isFlaggedFraud: 商业模型为了控制大额转账并且标记为非法操作,在这儿,非法操作是指转账金额超过20万。

  • 读取文件
    在代码所在的文件夹中创建一个新的文件夹,用于存放数据集
    dataset_path='./pythonjinrong'
    csvfile_path=os.path.join(dataset_path,'PS.csv')
    
    #解压数据集
    raw_data=pd.read_csv(csvfile_path)
  • 统计数据集中的各转账类型的数量
    print('转账类型记录统计:')
    print(raw_data['type'].value_counts())
    fig,ax=plt.subplots(1,1,figsize=(8,4))
    raw_data['type'].value_counts().plot(kind='bar',title='Transaction Type',ax=ax,figsize=(8,4))
    plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>