p值>0.05,统计意义上不显著?

其实,很多非统计学专业的朋友或者没有阅读学习过统计或计量相关书籍的朋友会对各统计分析或数据分析软件上的数值迷惑住。那么在进行参数估计时,p值和显著性水平(α)以及统计显著性之间有什么样的关系?如何使结果变得漂亮,使参数变得显著呢?答案非常简单,就是根据需要调整显著性水平。

这里简单的将百度百科上的内容搬过来先说明以下显著性水平是什么?

假设检验是围绕对原假设内容的审定而展开的。如果原假设正确我们接受了(同时也就拒绝了备择假设),或原假设错误我们拒绝了(同时也就接受了备择假设),这表明我们作出了正确的决定。但是,由于假设检验是根据样本提供的信息进行推断的,也就有犯错误的可能。有这样一种情况,原假设正确,而我们却把它当成错误的加以拒绝。犯这种错误的概率用α表示,统计上把α称为假设检验中的显著性水平  ,也就是

### 限制性立方样条 p大于0.05意义 当限制性立方样条 (RCS) 分析得到的 p大于0.05时,这表明在给定置信水平下,所研究变量与响应变量之间存在显著的非线性关系[^1]。具体来说: - **假设检验角度**:p衡量的是如果零假设(即无关联)成立的情况下观察到当前样本数据的概率。对于 RCS 来说,零假设通常是“自变量和因变量间的关系是线性的”。因此,较大的p意味着现有证据足以拒绝这一假设。 - **实际应用视角**:在流行病学或临床研究中,这意味着可能需要考虑更复杂的非线性模型来描述两者间的联系;简单线性回归或其他参数化方法可能是足够的。然而,这也取决于具体的科学背景以及先前的研究成果。 #### R代码示例用于解释P计算过程 下面是一个基于`rms`包创建并测试RCS模型的例子,其中包含了如何获取整体拟合优度及其对应的p的方法。 ```r library(rms) # 创建一个模拟的数据集 set.seed(123) n <- 300 age <- rnorm(n, mean = 50, sd = 10) y <- .4 * (age - min(age))^2 + rnorm(n)*20 d <- data.frame(y=y, age=age) # 使用 ols 函数建立多元线性回归模型,并加入rcs()指定年龄作为连续型协变量 fit <- ols(y ~ rcs(age), data=d) anova(fit) # 输出ANOVA表查看各成分贡献及总效应大小 ``` 此段代码会输出关于整个模型性能的信息,包括但限于全局统计量如似然比卡方检验的结果,从而帮助判断是否存在有意义的曲线趋势[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值