【数据结构】图的应用的时间复杂度

  1. 图的遍历

    • 深度优先搜索(DFS):使用邻接表表示的图进行DFS的时间复杂度是 (O(V + E)),其中 (V) 是顶点数,(E) 是边数。使用邻接矩阵表示的图进行DFS的时间复杂度是 (O(V^2))。
    • 广度优先搜索(BFS):使用邻接表表示的图进行BFS的时间复杂度也是 (O(V + E)),使用邻接矩阵表示的图进行BFS的时间复杂度同样是 (O(V^2))。
  2. 图的应用

    • 最小生成树
      • Prim算法:使用邻接表表示的图进行Prim算法的时间复杂度是 (O(V^2))
      • Kruskal算法:使用邻接表表示的图进行Kruskal算法的时间复杂度是 (O(E \log V))。
    • 最短路径
      • 单源最短路径
        • BFS:用于无权图中的单源最短路径,时间复杂度是 (O(V + E))。
        • Dijkstra算法:用于有权图中的单源最短路径,时间复杂度是 (O(V^2))
      • 多源最短路径
        • Floyd算法:用于计算图中所有顶点对之间的最短路径,时间复杂度是 (O(V^3))。
    • 拓扑排序
      • 使用邻接表表示的图进行拓扑排序的时间复杂度是 (O(V + E))。
      • 使用邻接矩阵表示的图进行拓扑排序的时间复杂度是 (O(V^2))。
    • 关键路径
      • 使用邻接表表示的图进行关键路径分析的时间复杂度是 (O(V + E))。
      • 使用邻接矩阵表示的图进行关键路径分析的时间复杂度是 (O(V^2))。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值