目录
一、认识elaticsearch
elasticsearch基于倒排索引结构
1、什么是正向索引
正向索引就像mysql数据库,如果根据非索引字段查询数据,会逐行获取表中所有数据,然后判断是否满足规则
例如:设置数据库中有title字段,为非索引字段流程如下:
1)用户搜索数据,条件是title符合`"%手机%"`
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
2、什么是倒排索引
- 文档:就是用来搜索的数据,等同于mysql数据库中的一条记录
- 词条:利用分词器分出来的词条,例如数据中title为:我是中国人,分词器就可以分为:我 、是、 中国人、 中国、 国人等几个词条出来
* 将每一个文档的数据利用算法分词,得到一个个词条
* 创建表,每行数据包括词条、词条所在文档id、位置等信息
* 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

流程:
1)用户输入条件`"华为手机"`进行搜索。
2)对用户输入内容**分词**,得到词条:`华为`、`手机`。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。

- 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是**根据文档找词条的过程。
- 而倒排索引**则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是**根据词条找文档的过程。
二、概念
1、说明
elasticsearch是面向document存储的,一个doc就是数据库的一条记录,该条记录会被序列化成json的格式存入文档中,文档中包含很多的字段(filed)等同于数据库中的列

2、mysql和es的对比

三、mapping属性
1、定义
mapping是对文档中field的约束,例如对字段类型的约束。就像数据库中的表结构
- * type:字段数据类型,常见的简单类型有:
- * 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- * 数值:long、integer、short、byte、double、float、
- * 布尔:boolean
- * 日期:date
- * 对象:object
- * index:是否创建索引,默认为true
- * analyzer:使用哪种分词器
- * properties:该字段的子字段
例如下面的json文档:
{
"age": 21,
"weight": 52.1,
"isMarried": false,
"info": "这是一个程序员",
Elasticsearch语法及响应结果解析

最低0.47元/天 解锁文章
9548

被折叠的 条评论
为什么被折叠?



