kibana es 语法记录 elaticsearch

Elasticsearch语法及响应结果解析

目录

一、认识elaticsearch

1、什么是正向索引

2、什么是倒排索引

二、概念

1、说明

2、mysql和es的对比

三、mapping属性

1、定义

四、CRUD

1、查看es中有哪些索引库

2、创建索引库

3、修改索引库

4、删除索引库

5、新增文档

6、删除文档

5、条件查询


一、认识elaticsearch

elasticsearch基于倒排索引结构

1、什么是正向索引

正向索引就像mysql数据库,如果根据非索引字段查询数据,会逐行获取表中所有数据,然后判断是否满足规则

例如:设置数据库中有title字段,为非索引字段流程如下:

1)用户搜索数据,条件是title符合`"%手机%"`

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

2、什么是倒排索引

  • 文档:就是用来搜索的数据,等同于mysql数据库中的一条记录
  • 词条:利用分词器分出来的词条,例如数据中title为:我是中国人,分词器就可以分为:我 、是、 中国人、 中国、 国人等几个词条出来

* 将每一个文档的数据利用算法分词,得到一个个词条
* 创建表,每行数据包括词条、词条所在文档id、位置等信息
* 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

流程:

1)用户输入条件`"华为手机"`进行搜索。

2)对用户输入内容**分词**,得到词条:`华为`、`手机`。

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是**根据文档找词条的过程。
  • 而倒排索引**则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是**根据词条找文档的过程。

二、概念

1、说明

elasticsearch是面向document存储的,一个doc就是数据库的一条记录,该条记录会被序列化成json的格式存入文档中,文档中包含很多的字段(filed)等同于数据库中的列

2、mysql和es的对比

三、mapping属性

1、定义

mapping是对文档中field的约束,例如对字段类型的约束。就像数据库中的表结构

  • * type:字段数据类型,常见的简单类型有:
    •   * 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    •   * 数值:long、integer、short、byte、double、float、
    •   * 布尔:boolean
    •   * 日期:date
    •   * 对象:object
  • * index:是否创建索引,默认为true
  • * analyzer:使用哪种分词器
  • * properties:该字段的子字段

例如下面的json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "这是一个程序员",
 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值