字典序问题 再是以bc开头、长度为3的字符串的总数,即字符串"bc[]"的数量;在求出num矩阵这里可以用一些小技巧,可以将复杂度降为两个循环,即添加sum和pre这两个变量,sum用于存储长度为len的字符串的总数量,计算好后会储存在num[len][0]处,这也正好将这一空闲空间利用了,而pre是储存储存长度为(len-1)且序号大于first的字符串总数,比如如果我们要求下图中的num[2][1](蓝色色块),即以a开头、长度为2的字符串数量,那么此时pre表示的就是红色色块中数字的总和。
第6讲 叠加定理 叠加定理1.线性系统2.叠加定理1.线性系统●线性元件:如v(t)=i(t)R(t),v(t)=i(t)R●线性系统:设y = f(x),C为任意常数,有Cy1 + Cy2 = f(Cx1 + Cx2)●线性电路:描述电路输出与输入关系的函数为线性函数●线性系统性质:2.叠加定理●内容:在线性电路中,全部独立电源共同作用时,在任一支路中产生的电流或任意两点间的电压等于各自独立电源单独作用时在该支路中产生的电流或该两点间电压的代数和。●含独立源电路的叠加规则:1).为每个独立源构成一个其余
第7讲 替代定理、戴维南定理、诺顿定理 替代定理、戴维南定理、诺顿定理1.替代定理2.戴维南定理3.诺顿定理4.戴维南定理和诺顿定理的等效1.替代定理●内容:任何一支路可以用一个独立电压源或独立电流源代替,只要电压源的电压等于该支路电压,或者电流源的电流等于该支路电流即可。当电路中的某一支路被电压源或电流源取代后,其它任何支路的电压和电流均不会发生变化。2.戴维南定理●内容:任意一个一端口(二端)线性网络均可以用一个理想电压源和一个电阻的串联来等效,电压源的电压等于该端口开路(不接其它电路)时的电压(开路电压),电阻为从端口看进去的电
第8讲 MOSFET及MOSFET放大器 MOSFET及MOSFET放大器1.MOSFET基本特性1.1基本结构1.2电气特性1.3模型化MOSFET特性2.MOSFET放大器2.1信号放大2.2MOSFET放大器的等效模型2.3MOSFET放大器的工作区间2.4MOSFET放大器的偏置1.MOSFET基本特性1.1基本结构●概念:Mental-Oxide-Semiconductor Field-Effect Transistor(金属-氧化物-半导体场效应晶体管),简称MOSFET,分为P型和N型。●结构:3端元件:栅极G,源极S,漏极
第8讲+ MOSFET工作原理 以Ntype MOS晶体管为例,探讨MOS管的工作原理。放大作用的实质是控制作用,为探究栅极电压对沟道的控制作用,先将源极(s)、漏极(d)、衬底连接起来,并在栅极(g)和源极之间加上电压,如图一所示。在加了上述电压之后,由于源极和衬底相连,相当于在栅极和衬底之间加上了电压,就会形成如图二所示的电场,当电压较小时,不会对晶体管产生明显影响。逐渐增大电压,当电压增大到某个值时(开启电压Vt),绝缘层下方的载流子空穴将被排斥,而绝缘层下方和两个N型区的载流子将被吸引。这样,在源极和漏极之间就出现
第9讲 运放模型与简单运放电路 运放模型与简单运放电路1.运放模型与特性1.1基本概念1.2运放抽象1.3运放理想模型2.简单运放电路2.1同相放大电路2.2反相放大电路3.负反馈1.运放模型与特性1.1基本概念●“虚断”:在理想情况下,运放的输入电阻无穷大,流入运放输入端电流为0,可认为反相与同相输入端之间相互断路,称之为“虚假断路”。●“虚短”:当运放引入负反馈且开环增益A足够大时,V+ - V-近似为0,即V+ = V- ,相当于短路,称之为“虚假短路”。1.2运放抽象●运放抽象:4端口元件1).正电源输入端口2).
第10讲 基本运算电路 基本运算电路1.加法器与减法器2.积分器与微分器3.RC电路的时间常数1.加法器与减法器●加法器:●减法器:2.积分器与微分器●积分器:●微分器:3.RC电路的时间常数设电容上初始电压为0,则●乘积RC被称之为时间常数????(????),电阻单位为Ω、电容单位为F时,????(????)的单位为S(秒)。●当充放电时间超过3????(3RC)或5????(5RC)时,认为充放电已经完成。●????越大,电压做线性变化的时间越长,????大的充放电电路适合用来作为
第11讲 频谱与滤波器 频谱与滤波器1.频响特性1.1频谱1.2相量1.3阻抗1.4频响特性2.滤波器2.1滤波器种类2.2无源滤波器(无放大电路)2.3有源滤波器2.4幅频特性的过渡带1.频响特性1.1频谱●概念:频率谱密度的简称,是频率的分布曲线,反应不同频率的振动的幅值。1.2相量●概念:在频率相同的正弦电路中,由于频率一定,在描述电路物理量时就可以只需考虑振幅与相位,振幅与相位用一个复数表示,复数的模为最大值,幅角为初相位。●欧拉恒等式 : e^jφ=cosφ+jsinφ●复数: A=a+jb = |A|c