最大矩形00

该文介绍了如何将最大矩形问题转化为84题的柱状图最大矩形问题,通过计算矩阵中1的纵向高度,使用单调栈来找到每一层的最大矩形。主要思路是统计矩阵中每个点为起点时的最高柱子,并用栈来维护当前层的高度,从而找到最大矩形的面积。

题目链接

最大矩形

题目描述

注意点

  • matrix[i][j] 为 ‘0’ 或 ‘1’
  • 1 <= row, cols <= 200

解答思路

  • 最初的想法是找到起点然后向右方及下方进行广度优先遍历,如果某次无法同时向右方和下方进行扩展,则说明找到了该起点的最大矩形,这种方法的时间复杂度比较高
  • 参照题解可以将该题看作题目84的翻版,只需要进行简单的处理
  • 以纵向为维度(横向也可),统计每一层每个点为起点时纵向的相邻的最大矩阵,统计过后,对于每一层,都可以看作柱状图中最大的矩形问题,之后就用单调栈解决即可

代码

class Solution {
    int m;
    int n;
    public int maximalRectangle(char[][] matrix) {
        int res = 0;
        m = matrix.length;
        n = matrix[0].length;
        // 存储每个位置从下到上纵向的高度
        int[][] arr = fillArr(matrix);
        for (int i = 0; i < m; i++) {
            int area = rowMaximalRectangle(arr[i]);
            res = Math.max(res, area);
        }
        return res;
    }

    public int rowMaximalRectangle(int[] heights) {
        int area = 0;
        // 单调递增栈,存储的是heights下标
        Deque<Integer> dq = new ArrayDeque<>();
        for (int i = 0; i < heights.length; i++) {
            // 当栈底高度大于当前高度,说明找到了栈底柱子的最大矩形
            while (!dq.isEmpty() && heights[dq.peekLast()] > heights[i]) {
                int idx = dq.pollLast();
                int l = dq.isEmpty() ? -1 : dq.peekLast();
                int r = i;
                area = Math.max(area, heights[idx] * (r - l - 1));
            }
            dq.offerLast(i);
        }
        // 栈中的剩余元素都是单调递增栈,与右边界组成矩形
        while (!dq.isEmpty()) {
            int idx = dq.pollLast();
            int l = dq.isEmpty() ? -1 : dq.peekLast();
            int r = heights.length;
            area = Math.max(area, heights[idx] * (r - l - 1));
        }
        return area;
    }

    public int[][] fillArr(char[][] matrix) {
        int[][] arr = new int[m][n];
        for (int j = 0; j < n; j++) {
            if (matrix[0][j] == '1') {
                arr[0][j] = 1;
            }
        }
        for (int i = 1; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == '1') {
                    arr[i][j] = arr[i - 1][j] + 1;
                }
            }
        }
        return arr;
    }
}

关键点

  • 怎么将本题抽象成做过的84题问题
  • 单调栈的使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值