深度学习|2|softmax回归pytorch实现iris鸢尾花数据的softmax回归分类任务

文章介绍了鸢尾花数据集,包含150个样本,用于花卉分类。通过PyTorch构建了一个基于softmax的网络模型,使用交叉熵损失函数和梯度下降优化器进行训练,并进行了模型性能评估。
摘要由CSDN通过智能技术生成

iris数据集介绍

由统计学家和植物学家Ronald Fisher在1936年收集并发布。该数据集中包含了150个样本,其中每个样本代表了一朵鸢尾花(iris flower),并且包含了四个特征(sepal length(花萼长度)、sepal width(花萼宽度)、petal length(花瓣长度)和petal width(花瓣宽度))以及对应的类别标签(iris setosa、iris versicolor和iris virginica)。

  • 样本数量:150条
  • 类别数量:3类
  • 每类样本:50条
  • 特征维度:4

读取数据集

import numpy as np
import torch

def load_iris(filename):
    data = np.load(filename)
    features = data['data']
    labels = data['label']
    return torch.tensor(features, dtype=torch.float64), torch.tensor(labels, dtype=torch.int64)

train_data, train_label = load_iris(r"../../Dataset/iris/iris_train.npz")
valid_data, valid_label = load_iris(r"../../Dataset/iris/iris_valid.npz")
print(train_data.shape, train_label.shape, valid_data.shape, valid_label.shape,)
input_dim = train_data.shape[1]
output_dim = int(train_label.max
好的,关于softmax回归PyTorch中的实现,针对FashionMNIST数据集的话,可以按照以下步骤进行。 首先,需要引入相应的包: ``` import torch import torchvision from torch.utils.data import DataLoader import torch.nn.functional as F ``` 然后,准备数据集: ``` # 准备训练集和测试集 train_dataset = torchvision.datasets.FashionMNIST(root='./data/FashionMNIST', train=True, transform=torchvision.transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.FashionMNIST(root='./data/FashionMNIST', train=False, transform=torchvision.transforms.ToTensor(), download=True) # 定义数据加载器 train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False) ``` 接下来,定义模型: ``` # 定义模型 class SoftmaxRegression(torch.nn.Module): def __init__(self): super(SoftmaxRegression, self).__init__() self.linear = torch.nn.Linear(784, 10) def forward(self, x): x = x.reshape(x.shape[0], -1) logits = self.linear(x) return logits ``` 然后,定义优化器和损失函数: ``` # 定义优化器和损失函数 model = SoftmaxRegression() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) criterion = torch.nn.CrossEntropyLoss() ``` 接着,进行模型训练: ``` # 模型训练 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播及计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播及优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) ``` 最后,进行模型测试: ``` # 模型测试 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) ``` 这样,就可以在PyTorch实现softmax回归,利用FashionMNIST数据集进行模型训练和测试了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

入门两年的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值