A. Matrix Game Codeforces Round #648 (Div. 2)

这篇博客讨论了一种两人玩的矩阵游戏,玩家轮流选择未被占用的单元格,不能与已占用的同一行或列的单元格相邻。如果一个玩家无法进行有效移动,则他输掉游戏。博主给出了一个C++程序来确定先手玩家(Ashish)是否能赢得比赛,基于最优策略。通过实例分析了不同情况下的胜者,并解释了每一步的逻辑。

A. Matrix Game
Ashish and Vivek play a game on a matrix consisting of n rows and m columns, where they take turns claiming cells. Unclaimed cells are represented by 0, while claimed cells are represented by 1. The initial state of the matrix is given. There can be some claimed cells in the initial state.

In each turn, a player must claim a cell. A cell may be claimed if it is unclaimed and does not share a row or column with any other already claimed cells. When a player is unable to make a move, he loses and the game ends.

If Ashish and Vivek take turns to move and Ashish goes first, determine the winner of the game if both of them are playing optimally.

Optimal play between two players means that both players choose the best possible strategy to achieve the best possible outcome for themselves.

Input
The first line consists of a single integer t (1≤t≤50) — the number of test cases. The description of the test cases follows.

The first line of each test case consists of two space-separated integers n, m (1≤n,m≤50) — the number of rows and columns in the matrix.

The following n lines consist of m integers each, the j-th integer on the i-th line denoting ai,j (ai,j∈{0,1}).

Output
For each test case if Ashish wins the game print “Ashish” otherwise print “Vivek” (without quotes).

Example
inputCopy
4
2 2
0 0
0 0
2 2
0 0
0 1
2 3
1 0 1
1 1 0
3 3
1 0 0
0 0 0
1 0 0
outputCopy
Vivek
Ashish
Vivek
Ashish
Note
For the first case: One possible scenario could be: Ashish claims cell (1,1), Vivek then claims cell (2,2). Ashish can neither claim cell (1,2), nor cell (2,1) as cells (1,1) and (2,2) are already claimed. Thus Ashish loses. It can be shown that no matter what Ashish plays in this case, Vivek will win.

For the second case: Ashish claims cell (1,1), the only cell that can be claimed in the first move. After that Vivek has no moves left.

For the third case: Ashish cannot make a move, so Vivek wins.

For the fourth case: If Ashish claims cell (2,3), Vivek will have no moves left.

#include <iostream>
#include <algorithm>
#include <set>
#include<cstring>
using namespace std;
#define int long long
int ch[101][101];
int a[101], b[101];
signed main()
{
    int t;
    cin >> t;
    while (t--)
    {
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        int n, m;
        cin >> n >> m;
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= m; j++)
            {
                cin >> ch[i][j];
                if (ch[i][j] == 1)
                    a[i]++, b[j]++;
            }
        }
        int cou1 = 0, cou2 = 0, cou;
        for (int i = 1; i <=n; i++)
        {
            if (a[i] == 0)
                cou1++;
        }
        for (int i=1;i<=m;i++)
        {
            if (b[i]==0) cou2++;
        }
        cou = min(cou1,cou2);
     //   cout<<cou<<endl;
        if (cou%2==0) cout<<"Vivek"<<endl;
        else cout<<"Ashish"<<endl;
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值