Dataset & DataLoader
1、官方解释(Google翻译):
处理数据样本的代码可能会变得混乱且难以维护;理想情况下,我们希望我们的数据集代码与我们的模型训练代码分离,以获得更好的可读性和模块化。
PyTorch 提供了两个数据原语:torch.utils.data.DataLoader 和torch.utils.data.Dataset 允许我们使用预加载的数据集以及我们自己的数据。 Dataset存储样本及其对应的标签,并DataLoader在 周围包裹一个可迭代对象Dataset,以便轻松访问样本。
2、Dataset
是所有开发人员训练、测试使用的所有数据集的一个模板。
Dataset定义了数据集的内容,它相当于一个类似列表的数据结构,具有确定的长度,能够用索引获取数据集中的元素。
DataLoader定义了按batch加载数据集的方法,它是一个实现了__iter__方法的可迭代对象,每次迭代输出一个batch的数据。
3、Dat
本文深入探讨PyTorch中的Dataset和DataLoader。Dataset作为数据集模板,负责存储样本和标签,而DataLoader则用于按批次加载数据,支持多进程、批大小调整和数据洗牌,方便模型训练。通过自定义Dataset类,可以轻松处理个性化数据,并使用DataLoaders进行高效迭代。
订阅专栏 解锁全文
2347

被折叠的 条评论
为什么被折叠?



