Webots的使用教程(一):基础知识与操作 为了做六足机器人的步态仿真,再b站看的Sun博士的课程,做下笔记,以防忘记,有需求的推荐去看看,有用记得三连哦这个系列可能文章都会比较简短,最后更完了看有没有必要合成一个吧。是一款机器人仿真软件。
毕设之路(一):树莓派初始化配置 raspberry pi一直在以比较快的速度发展,有些关于树莓派初始化的博客比较过时了,有些繁琐的步骤已经可以省略,所以干脆自己将配置过程中的步骤记录下来,一方面自己我在配置的过程中还比较顺利,有一定参考价值,另一方面也是为了以后不用再去找别人的博客来配置,所以这里我也写得比较整合。可能后面我在学习过程中出现什么问题还会继续更新。
问题:为什么流量强度为 1 时排队时延是无穷? 抵达,稳定一秒来一个分组,并且一秒处理完一个分组(发出),那么队列将稳定在一个定值上(本来有3个分组在排队,之后队伍+1和-1同时发生,那么将会永远保持3个分组)。问题就在于,为什么输入路由器的速率跟路由器发出的速率一致时,会无限排队(如果队列空间无限大),而不是进一个出一个使得排队情况稳定在某个值上?然而就像书中强调的,所有分组的抵达是随机过程,并且此过程一般符合泊松分布(Poisson distribution),那结果就有点不一样了。从 (5) 和 (6) 中容易看出,当流量强度。
组成原理(五):存储器(下) 哈工大计组网课笔记,由于CPU性能发展与存储器性能发展之间存在剪刀差,现阶段的CPU执行速度远大于一般主存(DRAM)存取速度,为了避免CPU出现“空等”现象,所以需要在CPU和主存之间加入一层容量小,速度高的Cache,CPU访问的的指令,大多能在Cache中取得。程序访问的局部性原理:包括时间局部性和空间局部性。时间局部性是指在最近的未来要用到的信息,很可能是现在正在使用的信息,因为程序中存在循环。空间局部性是指在最近的未来要用到的信息,很可能与现在正在使用的信息在存储空间上是连续的。
leetcode 15:三数之和 直接看题干,使得a + b + c = 0,三个变量,我们大概可以用三个for循环暴力求解,但是O(n^3)的复杂度太大,肯定会超时。这里我们想一下,如果是a + b = 0两数之和,我们很容易想到先排序然后再使用双指针,这里我们将a+b+c =0变式为a+b=-c,这样我们只是在两数之和的基础上再加一个for循环枚举。题目:给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0?注意:答案中不可以包含重复的三元组。