[程序设计]基于人工智能博弈树,极大极小(Minimax)搜索算法并使用Alpha-Beta剪枝算法优化实现的可人机博弈的AI智能五子棋游戏。

   ⬜⬜⬜ 🐰🟧🟨🟩🟦🟪 (*^▽^*)欢迎光临 🟧🟨🟩🟦🟪🐰⬜⬜⬜


✏️write in front✏️
📝个人主页:陈丹宇jmu
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​
🙉联系作者🙈by QQ:813942269🐧
🌈致亲爱的读者:很高兴你能看到我的文章,希望我的文章可以帮助到你,祝万事顺意🏳️‍🌈
✉️少年不惧岁月长,彼方尚有荣光在 🏆

[专栏链接] 人工智能项目实战-【AI智能五子棋项目的开发】https://blog.csdn.net/weixin_51989356/category_12160426.html?spm=1001.2014.3001.5482icon-default.png?t=MBR7https://blog.csdn.net/weixin_51989356/category_12160426.html?spm=1001.2014.3001.5482

绪论-五子棋的特点与规则

五子棋是两方之间进行的竞技活动,专用棋盘为15*15,五连子的方向为横、竖、斜;任一方在棋盘上形成横向、竖向、斜向的连续的相同颜色的五个(含五个以上)时即为该方胜利;在棋盘上以对局双方均不可能形成五连为和棋。黑白双方依次落子,由黑方先下,由于先下一方在局面上占优,所以五子棋规则分为禁手和无禁手两种。

禁手规则:禁手是针对先行的黑棋而言,以限制黑棋的先行优势为目的。对局中如果黑棋违反禁手规则将被判负。以中国五子棋竞赛规则为例,有三三禁手(黑棋一子落下时同时形成两个或两个以上的活三,此子必须为两个活三共同的构成子)、四四禁手(黑棋一子落下同时形成两个以上的冲四或活四)、长连禁手(黑棋一子落下形成一个或一个以上的长连)。无禁手指不对黑棋的先行优势做任何限制。

表4.1.1 常见的棋盘术语

概念

概念描述

阳线

直线,棋盘上可见的横纵直线。

阴线

斜线,由交叉点构成的与阳线成45°夹角的隐形斜线。

长连

五枚以上同色棋子在一条阳线或阴线上相邻成一排。

活四

有两个点可以成五的四。

冲四

只有一个点可以成五的四。

死四

不能成五的四。

活三

再走一着可以形成活四的三。

眠三

再走一着可以形成冲四的三。

死三

不能成五的三。


 程序设计运行流程图

为实现以上程序的正常运行,程序设计开发出了,初始化模块,图形界面模块,游戏规则模块,AI函数处理模块等。这些模块的具体设计将在下一章内详细介绍。

AI五子棋运行流程图

 AI算法的具体实现

创建minimax的节点

搜索时的一个节点,需要创建一个minimax的节点,节点需要考虑的要素有:

    param game:                 游戏内容。是Game类的一个对象
    param ope:                    这一步的操作是什么
    param depth:                 当前节点的深度
    param alpha:                 这个节点初始的alpha值
    param beta:                   这个节点初始的beta值
    param force_score:       是否必须算出一个分数
    param player_first:        是否玩家先出

对节点的评价分析

结合上文对于五子棋对弈的特点与规则的介绍,我们可以构造出一个合适的评价函数,通过评价函数估值AI下载棋盘上的每一步的价值,从而AI可以选择出每个对弈回合中最有利于AI的落子位置。

计算这个节点的分数。对AI越有利则分数越高,反之分数越低。

      如果能够连成五子,则记为100分

      判断玩家和电脑的四子的数目(需要保证:不是已经被堵死的四子)

      如果能够连成活四,或连成双四,则记为90分

      如果能够连成四三,则记为80分

      如果能够连成四子,则记为70分

      如果能够连成双三,则记为60分

      如果能够连成单活三,则记为50分

      其他情况。按照棋子的分布来计分(根据这个棋子距离棋盘中心的距离,以及这个棋子周围8格棋子的个数来评分)

如代码所示的为如果能够连成活四,或连成双四,则记为90分的节点评价的设计情况。


实现搜索算法的优化

按照minimax和alpha-beta剪枝的方法搜索一个根节点下的最优结果。
 param cur_node_dx: 当前节点的索引值
 param ope_hist: 假象的历史状态列表
 param max_depth: 最大允许的深度。

优化算法的主要设想


1.首先确认什么地方可以落子。

落子的条件是:这个格子必须为空,周围8格内必须有至少一个棋子。
2.然后对每一个可以落子的格子进行搜索


2.1 创建一个子节点,并计算这个子节点的分数
        a.对于非最终层的节点,不急于立即算出分数,
        b.把这个节点插入到搜索树中,
        c.将这个新节点记录为当前节点的子节点,
        d.记录每个节点下一步的动作。


2.2根据子节点的情况,进行父节点的后续操作
        a.子节点有具体分数的情况下,就不用再进行更深层的迭代了
        b.假想中玩家走的,因此需要让分数尽量小,且应该修改beta值
        c.假想中电脑走的,因此需要让分数尽量大,且应该修改alpha值
        d.子节点还没有具体分数的情况下,应该以这个子节点为下一层的根节点,进行递归,之后再进行计算


2.3根据递归后计算的结果,计算这个节点的分数
        f.假想中玩家走的,因此需要让分数尽量小,且应该修改beta值
        g.假想中玩家走的,因此需要让分数尽量小,且应该修改beta值


3.alpha-beta剪枝实现搜索优化


程序运行的模块代码调用过程

程序运行主要由五个模块组成,分别为:初始化模块、图形界面模块、游戏规则界面、AI函数处理,主函数模块。

初始化模块

初始化模块:对应程序中conner_widget.py,主要就是做一个程序的运行背景,对棋盘的初始化。

图形界面模块

图形界面模块是运行中的窗口显示,主要功能函数及解释如下:

def run_with_exc(f): 游戏运行出现错误时,用messagebox把错误信息显示出来

        init_ui()  # 初始化游戏界面

        self.g = Gomoku()  # 初始化游戏内容

        self.res = 0  # 记录那边获得了胜利

       self.operate_status = 0 

# 游戏操作状态。0为游戏中(可操作),1为游戏结束闪烁过程中(不可操作)



def init_ui(self): 初始化游戏界面

  1. 确定游戏界面的标题,大小和背景颜色

        self.setPalette(palette)

2. 开启鼠标位置的追踪。并在鼠标位置移动时,使用特殊符号标记当前的位置

        self.setMouseTracking(True)

  3. 鼠标位置移动时,对鼠标位置的特殊标记

        self.corner_widget = CornerWidget(self)

        self.corner_widget.repaint()

        self.corner_widget.hide()

  4. 游戏结束时闪烁的定时器

        self.end_timer = QTimer(self)

        self.end_timer.timeout.connect(self.end_flash)

        self.flash_cnt = 0  # 游戏结束之前闪烁了多少次

        self.flash_pieces = ((-1, -1), )  # 哪些棋子需要闪烁

   5. 显示初始化的游戏界面

        self.show()



def paintEvent(self, e):绘制游戏内容

def draw_map():""绘制棋盘"""棋盘的颜色为黑色(绘制横线,竖线

def draw_pieces(): 绘制棋子



def mouseMoveEvent(self, e):

     1. 首先判断鼠标位置对应棋盘中的哪一个格子

     2. 然后判断鼠标位置较前一时刻是否发生了变化

     3. 最后根据鼠标位置的变化,绘制特殊标记


def mousePressEvent(self, e):根据鼠标的动作,确定落子位置

def end_flash(self) 游戏结束时的闪烁操作

def game_restart(self, res):游戏出现开始

游戏规则模块

游戏规则模块主要就是对游戏规则的说明:

class Gomoku:

def __init__(self):

        self.g_map = [[0 for y in range(15)] for x in range(15)]  # 当前的棋盘

        self.cur_step = 0  # 步数

        self.max_search_steps = 3  # 最远搜索2回合之后

def move_1step(self, input_by_window=False, pos_x=None, pos_y=None):玩家落子

        :param input_by_window: 是否从图形界面输入

        :param pos_x: 从图形界面输入时,输入的x坐标为多少

        :param pos_y: 从图形界面输入时,输入的y坐标为多少

def game_result(self, show=False):

判断游戏的结局。0为游戏进行中,1为玩家获胜,2为电脑获胜,3为平局。
主要用于判断是否横向连续五子,判断是否纵向连续五子,判断是否有左上-右下的连续五子,判断是否有右上-左下的连续五子,判断是否为平局。

def ai_move_1step(self):""电脑落子""

def ai_play_1step_by_cpp(self):判断下一步的操作

def show(self, res):""显示游戏内容""

def play(self):用户玩游戏

AI函数处理模块

AI函数处理模块:用到Alpha-Beta算法。

class Node:AI搜索时的一个节点

def __init__(self, game, ope, depth, alpha, beta, force_score, player_first):

        创建一个minimax的节点,

:param game: 游戏内容。是Game类的一个对象,

:param ope: 这一步的操作是什么,

:param depth: 当前节点的深度,

:param alpha: 这个节点初始的alpha值,

:param beta: 这个节点初始的beta值,

:param force_score: 是否必须算出一个分数,

:param player_first: 是否玩家先出。

     def calc_score(self):

        计算这个节点的分数。对AI越有利则分数越高,反之分数越低。

class AI1Step:落棋步骤

    def __init__(self, init_game, init_depth, player_first):

        决定AI这一步走什么地方,

:param init_game: 初始的游戏地图,

:param init_depth: 初始的深度,

:param player_first: 玩家是否先出。

    def search(self, cur_node_dx, ope_hist, max_depth):

        按照minimax和alpha-beta剪枝的方法搜索一个根节点下的最优结果,

:param cur_node_dx: 当前节点的索引值,

:param ope_hist: 假象的历史状态列表,

:param max_depth: 最大允许的深.

主函数模块

主函数模块作为程序的入口,进行程序的运行。

def main():

    app = QApplication(sys.argv)

    ex = GomokuWindow()

    sys.exit(app.exec_())

if __name__ == '__main__':

    main()


程序的运行情况

整体运行情况不错,反应比较灵敏,但在后期由于棋子越来越多,程序对棋子所做的选择就越来越多,运行速度就会变慢。而在运行过程中也有极小的概率程序会异常中断,目前分析可能为内存占用过多触发了程序设置的内存限制而导致的。黑白某一方连成五子即为获胜,当棋子落满棋盘的时候会默认为平局。

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈丹宇jmu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值