本文主要是用Python简单程序应用梯度下降法解决一个实际问题,帮助理解机器学习在预测方面的功能作用。
一、通过一个人的身高体重性别预测他的腰围
数据训练集(可以通过调查获得,这里只列4个,还可以更多)
假设从左到右分别是一个人的身高(cm)、体重(kg)、性别(0代表女,1代表男)和腰围(cm)

现在抛出一个问题:现给一个人,他身高175cm,65kg,性别男,预测一下他的腰围是多少?
那么,我们就需要用到机器学习的方法------梯度下降法来训练一个模型,专门用来预测一个给定一个人的腰围。
二、解决问题
这里就用numpy矩阵的方式表达输入和输出了
X=[[164 55 1]
[170 65 1]
[156 42 1]
[163 53 1]]
Y=[72 73 64 64]
W=[a,b,c]
b=0

本文通过Python程序应用梯度下降法,利用身高、体重和性别数据训练模型,预测个人腰围。示例中,使用4个样本进行训练,目标是找到最佳参数以准确预测未知个体的腰围。
最低0.47元/天 解锁文章

2335

被折叠的 条评论
为什么被折叠?



