【机器学习】机器学习之梯度下降法简单应用(Python)

本文通过Python程序应用梯度下降法,利用身高、体重和性别数据训练模型,预测个人腰围。示例中,使用4个样本进行训练,目标是找到最佳参数以准确预测未知个体的腰围。
摘要由CSDN通过智能技术生成

        本文主要是用Python简单程序应用梯度下降法解决一个实际问题,帮助理解机器学习在预测方面的功能作用。

一、通过一个人的身高体重性别预测他的腰围

数据训练集(可以通过调查获得,这里只列4个,还可以更多)

假设从左到右分别是一个人的身高(cm)、体重(kg)、性别(0代表女,1代表男)和腰围(cm)

现在抛出一个问题:现给一个人,他身高175cm,65kg,性别男,预测一下他的腰围是多少?

那么,我们就需要用到机器学习的方法------梯度下降法来训练一个模型,专门用来预测一个给定一个人的腰围。

二、解决问题

这里就用numpy矩阵的方式表达输入和输出了

X=[[164 55 1]

      [170 65 1]

      [156 42 1]

      [163 53 1]]

Y=[72 73 64 64]

W=[a,b,c]

b=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值