CINTA作业四:群、子群

1、证明命题6.6

因为G为群,且a,b,c∈G,则存在 a − 1 ∈ G a^{-1}∈G a1G,使得 a ⋅ a − 1 = e = a − 1 ⋅ a a·a^{-1}=e=a^{-1}·a aa1=e=a1a
又有 b a = c a ba=ca ba=ca,故 b a a − 1 = c a a − 1 baa^{-1}=caa^{-1} baa1=caa1,故 b = c b=c b=c
又有 a b = a c ab=ac ab=ac,同理可得 b = c b=c b=c

2、证明命题6.7

因为G为群,且 ∀ a , b ∈ G ∀a,b∈G a,bG
(1)
g m g n = g ⋅ g ⋅ . . . ⋅ g ( m − 1 次 群 运 算 ) ⋅ g ⋅ g ⋅ . . . ⋅ g ( n − 1 次 群 运 算 ) = g ⋅ g ⋅ . . . ⋅ g ( n + m − 1 次 群 运 算 ) = g m + n g^mg^n=g·g·...·g(m-1次群运算)·g·g·...·g(n-1次群运算)=g·g·...·g(n+m-1次群运算)=g^{m+n} gmgn=gg...gm1gg...gn1=gg...gn+m1=gm+n
(2)
( g m ) n = g m ⋅ g m ⋅ . . . ⋅ g m ( n − 1 次 群 运 算 ) = g m + m + . . . + m = g m n (g^m)^n=g^m·g^m·...·g^m(n-1次群运算)=g^{m+m+...+m}=g^{mn} gmn=gmgm...gmn1=gm+m+...+m=gmn
(3)
( g h ) − 1 = h − 1 g − 1 (gh)^{-1}=h^{-1}g^{-1} gh1=h1g1
( g h ) n ∗ ( g h ) − n = e (gh)^n*(gh)^{-n}=e ghnghn=e
( g h ) n ∗ ( h − 1 g − 1 ) n = e (gh)^n*(h^{-1}g^{-1})^{n}=e ghnh1g1n=e
( g h ) n = ( h − 1 g − 1 ) − n (gh)^n=(h^{-1}g^{-1})^{-n} ghn=h1g1n
如果 G 是阿贝尔群
同理可证

3、证明对任意偶数阶群G,都存在g∈G,g≠e且g²=e

因为群中任一阶大于2 的元素和它的逆元的阶相等,且当一个元素的阶大于2 时,其逆元和它本身不相等,即阶大于2的元素是成对的。所以偶数阶群中,除去成对的阶大于2的元素,剩下的只能是一阶元和二阶元,一阶元只有单位元一个,所以二阶元的个数为奇数个,所以对任意偶数阶群G存在二阶元。

4、证明命题6.8

群G的非空子集H是G的子群,当且仅当 H ≠ ∅ H≠ ∅ H=,且对任意 a , b ∈ H , a b − 1 ∈ H a,b ∈H,ab^{-1}∈H a,bHab1H
G 的 非 空 子 集 H 是 G 的 子 群 , 因 为 a , b ∈ H , 所 以 b − 1 ∈ H , 由 封 闭 性 可 得 a b − 1 ∈ H G的非空子集H是G的子群,因为a,b∈H,所以b^{−1}∈H,由封闭性可得ab^{−1}∈H GHG,a,bH,b1H,ab1H
因 为 H ≠ ϕ , 且 a , b ∈ H , a b − 1 ∈ H . 因为H ≠ϕ,且a,b∈H,ab ^{−1}∈H. H=ϕ,a,bH,ab1H.
取 任 意 a ∈ H , e = a a − 1 ∈ H 。 故 单 位 元 存 在 取任意a∈H,e=aa^{−1}∈H。故单位元存在 aH,e=aa1H
任 取 b ∈ H , 有 b − 1 = e b − 1 ∈ H 。 故 逆 元 存 在 任取b∈H,有b^{−1}=eb^{−1}∈H。故逆元存在 bH,b1=eb1H
对 任 意 a , b ∈ H , 有 b − 1 ∈ H , a b = a ( b − 1 ) − 1 ∈ H 。 故 满 足 封 闭 性 对任意a,b∈H,有b^{−1}∈H,ab=a(b^{−1})^{−1}∈H。故满足封闭性 a,bH,b1H,ab=a(b1)1H
任 取 a , b , c ∈ H , ( a b ) c = a ( b c ) 。 结 合 律 满 足 任取a,b,c∈H,(ab)c=a(bc)。结合律满足 a,b,cH,(ab)c=a(bc)
故 H 满 足 群 公 理 故H满足群公理 H

5、

因 为 G 是 群 , g i ∈ G , 所 以 g i g i − 1 = e 因为G是群,g_i∈G,所以g_ig_i^{−1}=e GgiGgigi1=e
所 以 ( g 0 g 1 . . . g n ) ( g n − 1 . . . g 1 − 1 g 0 − 1 ) = g 0 g 1 . . . ( g n g n − 1 ) . . . g 1 − 1 g 0 − 1 = e 所以(g_0g_1...g_n)(g_n^{−1}...g_1^{−1}g_0^{−1})=g_0g_1...(g_ng_n^{−1})...g_1^{−1}g_0^{−1}=e (g0g1...gn)(gn1...g11g01)=g0g1...(gngn1)...g11g01=e
故得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值