离散数学。

第一章

  1. 非真即假的陈述句称为命题(真命题,假命题)
  2. 不能被拆解为更简单命题的命题称为简单命题原子命题(真值确定的原子命题在复合命题中又称为命题常项命题常元,真值不确定元的称为命题变项命题变元
  3. 由多个简单命题通过联结词联结而成的命题成为复合命题
  4. 否定联结词(非p,或p的否定)
  5. 合取联结词(p且q,p与q)
  6. 析取式(p或q):相容或(二者可同时为真),排斥或(一者为真,一者为假)
  7. 蕴涵式(如果p,则q),p为前件,q为后件。只有当p为真,q为假时才为假,其余都为真
  8. 等价联结词(pq互为充要条件)(当且仅当二者同为真或同为假时,才为真)
  9. 符号优先级P9
  10. 合式公式:命题变项用联结词和圆括号按一定的逻辑关系联结起来的符号串(设A为合式公式,B 是A的一部分且也是合式公式,则B是A的子公式
  11. 公式层次:若A是单个的命题变项,则A为0层公式
  12. 成真赋值,成假赋值
  13. 真值表P11
  14. 永真式(重言式):A是任一命题公式,A在它的所有赋值下取值均为真
  15. 永假式(矛盾式):A是任一命题公式,A在它的所有赋值下取值均为真假
  16. 可满足式根据赋值不同,可真可假
  17. 哑元p13

题型:

  1. 判断句子是否是命题(有感叹号,问号等不是句号的不是。类似“我正在说谎话”的悖论也不是)
  2. 把命题符号化(将复合命题中的各个原子命题一一写出来,用pqrst等字母表示)P4
  3. 求复合命题的真值
  4. 判断是否是合式公式
  5. 求公式层数p10

第二章

  1. 设公式A,B的真值表相同,则A,B等价P18
  2. P20(16条公式)
  3. 析取范式:仅由有限个命题变项及其否定式构成的析取式
  4. 合取范式:仅由有限个命题变项及其否定式构成的合取式
  5. 范式:析取范式和合取范式的统称
  6. 任何一个公式都存在与之等值的析取范式和合取范式
  7. 析取范式:由有限个简单合取式的析取构成的命题
  8. 合取范式:由有限个简单合取式的析取构成的命题
  9. 每个简单合取式析取式)中的每个命题变项和它的否定式恰好出现一次,称为极小项极大项
  10. 极大项的否定等价于极小项
  11. 所有简单合取式析取式)都是极小项极大项)的析取范式合取范式)称为主析取范式主合取范式
  12. n元真值函数:p35
  13. 与非式:(p与q)的否定式p36
  14. 或非式(p与q)的否定式p36

题型:

  1. 判断两个公式是否等值(列出真值表判断,或者等值演算,找出不同的成真成假赋值)
  2. 判断公式的类型(永真永假可满足式,等值演算得到1,0,或者变项)
  3. 等值演算(熟练运用16条公式)
  4. 求复杂的复合公式的成真成假赋值(列真值表,或等值演算)
  5. 求给定公式范式的步骤:
  1. 消去联结词,蕴涵,等价
  2. 双重否定定律消去双重否定符,用德摩根律内移否定符
  3. 使用分配律
  1. 求主析取范式(主合取范式)

第三章

  1. 前提:已知的命题公式的集合;结论:从前提出发应用推理规则推出的命题公式;(结论分为有效结论,无效结论,对应的是有效推理和无效推理)
  2. 推理的形式结构p41
  3. P45十条推理定律
  4. P46推理规则

题型:

  1. 判断推理是否正确:
  1. 先将各简单命题符号化
  2. 用符号表示前提和结论
  3. 用符号表示推理的形式结构
  4. 做出判断
  1. 在自然推理系统下构造推理的证明(前提引入,附加前提引入等等)

第四章

  1. 个体词:研究对象中可以独立存在的具体或抽象的客体
  2. 个体常项:表示具体特定的客体的个体词,一般用a,b,c...表示
  3. 个体变项:表示抽象泛指的个体词,一般用x,y,z...表示
  4. 个体域(论域):个体变项的取值范围(可以是有穷集合,也可以是无穷集合)
  5. 全总个体域:由宇宙间一切事物组成
  6. 谓词:用来刻画个体词性质及个体词之间相互关系的词,常用FGH...表示(也有谓词常项和谓词变项之分)

例如:

2是有理数。2是个体常项,‘.......是有理数’是谓词,整个陈述句记为F(2)

x与y具有关系L。L是谓词变项

7.n元谓词:含有n个个体变项的谓词

8.零元谓词:不含个体变项的谓词

9.全称量词,存在量词

10.指导变元、量词的辖域、约束出现、自由出现p60

11.封闭的公式(闭式):不含自由出现的个体变项的公式

题型:

  1. 将命题符号化(注意:任意配蕴涵,存在配合取)
  2. 指出命题中的个体域和谓词含义
  3. 判断公式在解释和赋值下的真假
  4. 判断公式类型(简单的公式举例说明为真为假的情况,复杂公式采用实例代换判断)p63

第五章

  1. 量词否定等值式,量词辖域收缩和扩张等值式,量词分配等值式(存在量词对合取符号无分配律,任意量词和析取符无分配律,证明p69,举例说明)p68
  2. 换名规则:将公式中某量词辖域中的一个约束变项及其相应的指导变元全部改成该量词辖域中未曾出现过的某个个体变项的变项符号,前者与后者等价
  3. 前束范式:所有的量词写在前面公式接在后面

题型:

  1. 给定个体域D,消去个公式中的量词(任意配合取,存在配析取)
  2. 求前束范式

第六章

  1. N是自然数集合(0是自然数),Z是整数集合后,Q是有理数集合,R是实数集合,C是复数集合
  2. n元集:含有n个元素的集合
  3. 一元子集:含有单个元素的子集
  4. 一个集合的子集总数为2^n(包括空集)
  5. 幂集:以A集合的全体子集为元素的集合,记为P(A)p81
  6. P(A)∩P(B)=P(A∩B)
  7. 全集:在一个具体问题中,所涉及的集合都是某个集合的子集。则这个集合称为全集
  8. 相对补集A-B:只在集合A中不在集合B中的元素构成的集合,称为A的相对补集
  9. 如果两个集合的交集为空集,则称这两个集合不交
  10. 相对差集:除了集合AB的交集剩下的全部元素构成的集合,也就是A的相对补集加上B的相对补集
  11. 绝对补集:给定全集E后,E-A称为A的绝对补集
  12. 广义并:A的元素的元素构成的集合p83
  13. 广义交:A的所有元素的共同元素构成的集合
  14. 文氏图
  15. 包含排斥原理p86
  16. 欧拉函数P87
  17. 错位排列P88
  18. 集合恒等式p89(用于证明)

第七章

  1. 有序对:由两个元素x和y按一定顺序排列成的二元组,记作<x,y>,x是第一元素,y是第二元素
  2. 笛卡尔积:设A,B为集合,以A的元素为第一元素,B的元素为第二元素构成的有序对称为A和B的笛卡尔积(笛卡尔积不满足交换律和结合律
  3. 二元关系:元素都为有序对的集合或者空集,记作R,若<x,y>属于R,记作xRy
  4. 记A,B为集合,A*B称为A到B的二元关系。当A=B时称为A上的二元关系
  5. 全域关系:<x,y>其中x,y都属于A的元素,记为A*A,EA
  6. 恒等关系:<x,y>其中x等于y且都属于A的元素,IA
  7. 小于等于关系:<x,y>其中x小于等于y且都属于A的元素LA
  8. 整除关系:<x,y>其中y可以整除(大)x且都属于A的元素DA
  9. 包含关系:A={{b,c,d.....},{b,d,s,a,w.....},{s,w,a,e,f,g.....}},<x,y>其中y集合包含x集合RXX
  10. 关系矩阵:矩阵大小由集合A中元素<x,y>中x,y较大的一个为行为列。有则1无则0
  11. 关系图:设A集合中<x,y>其中x,y较大的为k,则关系图中有k个点,根据二元关系的元素关系连线,由x指向y

关系的运算:设R是二元关系,

  1. 则R中所有有序对的第一元素构成的集合称为R的定义域,记作domR

13.则R中所有有序对的第二元素构成的集合称为R的值域,记作ranR

14.R的定义域和值域合并为R的,记作fldR

15.R的逆关系:记作R的-1次:x,y互换

16.右复合:设F,G为二元关系,则右复合记作F。G,F的第二元素和G的第一元素相同时,则该元素为过渡元素,此时F的第一元素和G的第二元素组成的笛卡尔积为右复合

<x,t>    <t,y> ----->   <x,y>

17.左复合类似

  1. 设R为二元关系:
  1. R在A上的限制:由R中笛卡尔积元素的第一元素属于A的 笛卡尔积组成集合P103
  2. A在R下的像:由R中第一元素在A中的笛卡尔积元素对应的第二元素组成集合,记作R[A]
  1. 设F为任意的关系,则
  1. F的逆关系的逆关系为F
  2. F的逆关系的定义域等于F的值域(逆关系,x,y互换
  3. F的逆关系的值域等于F的定义域
  1. 设F,G为任意的关系:
  1. 左右复合不支持交换律:F。G。H=F。(G。H)(支持结合律)
  2. (F。G)的逆关系等于G的逆关系右复合F的逆关系(G和F的位置不能调换)
  1.     P105,    P107
  2. 自反关系:设A={1,2,3},R1,R2,R3是A上的关系

   R1={<1,1>,<2,2>},  R2={<1,1>,<2,2>,<3,3>,<2,3>},  R3={<1,3>}

则R1不是自反也不是反自反,R2是自反,R3是反自反

总结:自反必须含有中全部元素的恒等关系,反自反则任何一个恒等关系的元素都不能有,介于两者间啥也不是

  1. 对称:设A={1,2,3},R1,R2,R3,R4都是A上的二元关系,

  R1={<1,1>,<2,2>},  R2={<1,1>,<1,2>,<2,1>},   R3={<1,2>,<1,3>},  R4={<1,2>,<2,1>,<1,3>}

R1是对称也是反对称, R2是对称,R3是反对称,R4啥也不是

总结:二元关系中出现的元素都必须是对称的,反对称则不能出现任何一个对称元素,介于两者之间则啥也不是

  1. 传递:设A={1,2,3},R1,R2,R3都是A上的二元关系,

R1={<1,1>,<2,2>} ,  R2={<1,2>,<2,3>} ,  R3={<1,3>}

R1和R3是A上的传递关系, R2不是‘

  1. P109
  2. 关系矩阵和关系图:

自反性:每个顶点都有环

反自反性:每个顶点都没有环

对称性:如果两个顶点之间有边,一定是方向相反的(无单边)

  1. 关系的闭包:添加尽可能少的有序对,是R变成R’(具备自反性/对称性/传递性),R’是R的闭包(R属于R’)
  2. 一般将R的自反闭包记作r(R),  对称闭包s(R),  传递闭包t(R)

                                                                              

  1. 等价关系:一种重要的二元关系非空集合A中的自反对称传递关系,(三者同时满足)
  2. 等价类:A中具有同一性质元素的集合

Ps:等价关系R的关系图(图都是搭配着有序对)(P116)由若干个独立子图组成,每个独立子图都是全域关系图,独立子图的个数等于等价类的个数。

  1. 商集:设R为非空集合A的等价关系,以R的所有等价类作为元素集合称为A关于R的商集(元素为集合的集合)
  2. 划分:A={1,2,3/4,5/6,7,8/9,10}     “/”在A集合中任意划分,每个划分块之间没有交集,全部划分块的并集为全集p118

划分块a{1,2,3},划分块b{4,5},划分块c{6,7,8},划分块d{9,10}

Π={a,b,c,d}为一个划分,Π是一种商集

                                                                                

  1. 偏序关系:非空集合A上的关系,若R是自反的,反对称的(区别于等价关系),传递的,则称R为A上的偏序关系
  2. 可比:
  3. 覆盖:
  4. 哈斯图:

P120

  1. 最小元:和所有的元素都可比且比所有元素都小
  2. 极小元:不一定和其他元素可比,但没有比它小的元素,在哈斯图中的鼓励顶点既是最小元又是极小元
  3. 最大元:
  4. 极大元:
  5. 不一定有最大小元,一定存在极大小元
  6. 上界:
  7. 下界:
  8. 最小上界(上确界):
  9. 最大下界(下确界):
  10. 拓朴排序:
  11. 最小元一定是下届,同时也是最大下界,最大元一定是上界,同时也是最小上界

第八章

  1. 函数(映射)是一种特殊的二元关系
  2. 两个函数相等的条件:定义域和值域相同

3.定义域为domf=A, ranf属于B,则称f为从A到B的函数

4.所有从A到B的函数的集合记作BA(A为上标),读作“B上A”p129

5.当AB都为空集时,B上A=空集上空集={空集}

 当A=空集,B不等于空集时,B上空集={空集}

 当A不等于空集,B等于空集时时,空集上A=空集

总结:A为空集时为集合P129

  1. 设函数f:A--->B,  A1属于A,B1属于B,则:

令f(A1)={f(x)|x属于A1},称为f(A1)为A1在f下的像(像就相当于部分Y值的集合)

令f(B1)的-1次={x|x属于A且f(x)属于B1},称f(B1)的-1次为B1在f下的完全原像(B1中部分元素所对应的x值的集合)p129

函数:A——>B,则:

  1. 满射:B满,会出现多个x对应同一个y值
  2. 单射:一对一,x对y
  3. 双射:既满射由单射ppt17页构造双射函数
  4. 复合函数:
  5. 反函数:
  6. 等势:如果A——>B是双射函数,则A和B是等势的,记作A等价B(等势具有自反性,对称性,传递性):例如:Z等势与N,N*N等势于N,  N等势于Q
  7. 真优势于:
  8. 基数:有穷集合A的元素个数,记作|A|或者cardA

第九章

  1. 无序积:{{a,b}|a属于A并b属于B},记作A&B,无序对{a,b}={b,a},允许a=b
  2. 无向图G:是一个有序的二元组<V,E>,V是顶点集,其元素称为结点或顶点,E为边集,其元素称为无向边或边
  3. 有向图D:是一个有序的二元组<V,E>,E是笛卡尔积V*V的有穷多重子集
  4. 阶:图的顶点,阶数为顶点数
  5. 零图:一条边也没有的图,n阶零图记作Nn
  6. n阶图:n个顶点的图
  7. 平凡图:N1,只有一个顶点没有边
  8. 简单图没有边也没有环的图
  9. 标定图:给每个顶点和每条边起名的图,否则为非标定图
  10. 基图:有向图各边的方向去掉后得到的无向图
  11. (端点和边)关联次数:设G=<V,E>为无向图(有向图也一样),ek=(vi,vj)属于E,称vi,vj为ek的端点,ek与vi(vj)关联,当vi!=vj时,关联次数为1,vi=vj时,关联次数为2,,称为环。
  12. 孤立点:没有边关联的顶点
  13. 平行边:关联一对顶点的无向边或方向相同的有向边多于一条
  14. 重数,平行边的条数
  15. 度数:在无向图G中,称V作为端点的次数为v的度数,记作dG(v),在有向图D,称v作为始点的次数为出度,终点次数为入度
  16. 最大度,最小度的记作符号p151
  17. 悬挂顶点:度数为1的顶点
  18. 悬挂边:悬挂顶点关联的边
  19. 奇(偶)度顶点:度数为奇数(偶数)的顶点
  20. 握手定理任何无向图中,所有顶点的度数之和等于边数的2倍(有向图也成立)
  21. 推论:任何图中,奇度顶点的个数为偶数
  22. 同构:相同定点数,边数,度数的情况下,简单图可视为可动的的带节点的木棍,若通过旋转,翻折可达到一样的图形则同构,彼得松图是典型的同构图,建议记忆p153
  23. 补图:G=<V,E>,G的补图:元素是V的元素,但是由这些元素组成的无序积不在E中的图
  24. 自补图:当G和其补图等价时,称G是自补图p153
  25. 完全图:G中每个顶点都与其余顶点相邻的无向图
  26. 基图为n阶无向完全图的n阶有向图D称为n阶竞赛图
  27. n阶无向完全图,n阶有向完全图和n阶竞赛图的边数:n(n-1)/2,   n(n-1),   n(n-1)/2
  28. G为n阶无向简单图,若每个顶点的度数相同为K,则G为k-正则图(由握手定理得边数m=kn/2)
  29. 设G=<V,E>,   G’=<V’,E’>,V’是V的子集,E’是E的子集,称G’是G的子图,G是G’的母图
  30. 真子图
  31. 生成子图:当V=V’时
  32. V’导出子图:以V’为顶点集,以G中两个端点都在V’中的边为边集的图为G的V’导出子图
  33. 以E’为边集,以E’相关联顶点为顶点集的图为G的E’导出子图
  34. 删除边e,记作G-e,G-E’
  35. 删除点v,G-v表示删除v顶点及其相关联的边
  36. 收缩:p155
  37. 加新边,记作G+(v,u),表示在vu两顶点间加一条边
  38. 通路
  39. 回路p156
  40. 简单回路:图的顶点序列中,除了第一个顶点和最后一个顶点相同外,其余顶点不重复出现的回路
  41. 初级回路圈):图中的一个路径包括每个边恰好一次      初级必简单)
  42. 长度相同的圈都是同构的
  43. 对于图G的每条边给定一个数W(e),称作边e的权,这样的图称为带权图
  44. 设P为G的一条通路,P中所有边的权之和称为P的长度,记作W(P)
  45. 最短路径问题:Dijk2stra算法p158
  46. 连通图:若G是无向图或者G中任何两个顶点都是连通的,称为连通图
  47. 连通分支:简单讲:指一个图被分成几个小块,每个小块是联通的,但小块之间不联通,那么每个小块称为联通分支.一个孤立点也是一个联通分支记作p(G),若p(G)=1,则G为连通图
  48. n阶零图是连通分支最多的图
  49. 点割集:  且  不为空集,使得在无向图中去掉  中的点之后,图的连通分支增加,则称为无向图中的一个点割集需要注意的是当删除 的任何一个真子集中的点之后,不会增加图的连通分支。当集合 中只含有一个元素时,该元素可称为图参考Kindom214的CSDN)
  50. 边割集:与点割集类似,删掉某些边后,连通分支数增加,其中删掉的边数仅为一条,称该边为割边或桥
  51. 点连通度使连通图G成为一个不连通图需要删除的点的最小数目,记为K,则图也可称作K-连通图
  52. 边连通度使连通图G成为一个不连通图需要删去的边的最少数目,记为R,则图也可称作R边-连通图
  53. n阶完全图的点连通度为n-1,非连通图的连通度为0
  54. 若G是k-连通图,那么在G中删掉任何k-1个顶点后,依然是连通图
  55. 可达,相互可达
  56. 弱连通图:有向图D的基图是连通图
  57. 弱连通图不能使任意两点之间有路联通.单向连通图至少使任意两点之间有路联通,但不能使任意两点之间互达至少有一条路不重复地经过所有点.强连通能使任意两点之间互达.
  58. 极大路径:路径A的始点和终点不与A外的顶点相邻,A是极大路径
  59. 扩大路径法:若始点或者终点与路径外的某点相邻,则把它延申到这个顶点,重复操作。
  60. 无向图的关联矩阵(点和边):令mij为顶点vi和边ej的的关联次数,称(mij)n*m(横点竖线)为G的关联矩阵(环的关联次数为2)p162
  61. 关联矩阵每列的和dou'wei2,这是因为每条边都跟两个顶点相关联
  62. 关联矩阵中第i行的数字之和等于vi的度数
  63. 关联矩阵中所有元素相加为总度数,边数为列数,也等于总度数/2
  64. 关联矩阵中任意列相同时为平行边。
  65. 有向图的关联图(纵看)p163
  66. 邻接矩阵A(点跟点):aij为顶点vi到vj的边的条数,(aij)n*m为D的邻接矩阵,只看是否相邻不看方向
  67. 相邻矩阵中所有元素之和等于边数,aii元素之和为环的个数
  68. 相邻矩阵A^2的元素表示vi到vj 的长度为2 的通路条数p164定理9.9
  69. 可达矩阵:可达为1,不可达为0
  70. 可达矩阵对角线元素表示环存在与否

第十章

  1. 无向树:不含回路的无向连通图
  2. 树:每个连通分支都是树的无向图
  3. 平凡树:平凡图
  4. 树叶:悬挂顶点
  5. 分支点:度数大于等于2的结点
  6. 有nge 结点的树,它的所有结点度数之和为2n-2
  7. 非平凡树的无向树至少有两片树叶:证明2(n-1)>=x+2(n-x),解的x>=2
  8. 画出n阶非同构的树,例题见p171
  9. 生成树:若无向图G的生成子图T是树,则T是G的生成树(生成子图:点集相同,边集为子集)
  10. G在T中的边称为T的树枝,不在T中的边称为T的弦
  11. -余树(余树不一定是树):T的所有弦的导出子图为T的余树以所有弦为边集的图),记作  T
  12. 产生生成树的方法:破圈法:任取一个圈删去其中的一条边,重复操作直至无圈
  13. 最小生成树:G的所有生成树中权最小的生成树
  14. 求最小生成树的方法:避圈法:将边按权的大小排列,从大到小一次尝试删去,若删去后出现孤立点则不能删
  15. 有向树:若有向图的基图为无向树,则称这个有向图为有向树
  16. 根树:一个顶点入度为0(树根),其余顶点入度为1的有向树
  17. 树叶:入读为1,出度为0 的顶点
  18. 内点:入度为1,出度不为0的顶点
  19. 分支点:内点和树根的统称
  20. 层数:从树根到任意顶点V的路径长度(即边数),称为v的层数
  21. 树高:所有顶点最大层数
  22. 祖先,后代,父亲,儿子,兄弟
  23. 有序树:设T为根树,若将T中层数相同的顶点都标定次序,则T为有序树
  24. r叉树:若T的每个分支点至多有r个儿子,则T为r叉树
  25. r叉正则树:每个分支点恰好有r个儿子
  26. 若T是r叉正则树,且每片树叶的层数均为树高,则称为r叉完全正则树
  27. 二元有序树:每个结点至多有两个儿子,分别称为左儿子和右儿子
  28. 左子树,右子树
  29. 最优二叉树:权最小
  30. 最优二叉树的算法:Huffman算法p176
  31. 前缀码:设a1a2a3a4a5……an-1an是长为n的符号串,则a1,a1a2,a1a2a3……a1a2aa3…an-1都是该符号串的前缀
  32. 设A={B1,B2,…,Bn}是一个符号串集合,若A任意两个符号串互不为前缀,则称A为前缀码
  33. 二元前缀码:由0,1符号组成的前缀码
  34. 一颗二叉正则树可以产生唯一的二元前缀码
  35. 由最优二叉树求最佳前缀码将百分比作为顶点的权做出最优二叉树,左子树标为0,右子树标为1得到前缀码(最佳前缀码并不唯一

  1. 中序遍历法(序即根):左儿子,树根,右儿子
  2. 前序遍历法:树根,左儿子,右儿子
  3. 后序遍历法:左儿子,右儿子,树根
  4. 波兰符号法(前缀符号法):给出中缀计算式,画出树状图,再写出波兰式(若给出波兰式,则是从右往左计算
  5. 逆波兰符号法(后缀符号法):给出中缀给出计算式,画出树状图,再写逆波兰式(若给出逆波兰式,则从左往右计算)

第十一章

  1. 欧拉通路:恰好通过所有边一次且经过所有顶点的通路
  2. 欧拉回路:恰好通过所有边一次且经过所有顶点的回路
  3. 欧拉图:具有欧拉回路的图(平凡图为欧拉图)
  4. 半欧拉图:具有欧拉通路的图
  5. 欧拉图的充要条件:

无向图G是欧拉图当且仅当G是连通的且没有奇度顶点

有向图D是欧拉图当且仅当D是强连通的且每个顶点的入度等于出度

  1. 半欧拉图的充要条件:

无向图G是半欧拉图当且仅当G是连通的且恰有两个奇度顶点

有向图D是半欧拉图当且仅当D是单向连通恰有两个奇度顶点其中一个顶点的入度比出度大1,一个顶点的出度比入度大1,其余顶点的入度等于出度

(7)求欧拉回路的算法:

一个原则:尽量不走桥

(8)哈密顿通路:经过图中所有顶点一次且仅一次的通路

(9)哈密顿回路:经过图中所有顶点一次且仅一次的通回路

(10)半哈密顿图:具有哈密顿通路的图

(11)哈密顿图:具有哈密顿回路的图

(12)哈密顿图的必要条件:P(G-V1)<=|V1|,在途中删掉一些点及其关联的边,若连通分支数小于等于删掉的点的数目,则可以证明该图是哈密顿图(不存在哈密顿回路)。Ps:删除的原则是度数高的点优先删除。

(13)半哈密顿图的必要条件:P(G-V1)<=|V1|+1,在途中删掉一些点及其关联的边,若连通分支数小于等于删掉的点的数目加1,则可以证明该图是半哈密顿图(不存在哈密顿通路)。Ps:删除的原则是度数高的点优先删除。

  1. 哈密顿图的充分条件:设G是n阶无向简单图,若对于G中任意不相邻的顶点u,v,均有d(u)+d(v)>=n-1,则G存在哈密顿通路。
  2. 半哈密顿图的充分条件:设G是n阶无向简单图,若对于G中任意不相邻的顶点u,v,均有d(u)+d(v)>=n,则G存在半哈密顿通路
  3. 二部图:设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(V1,V2),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in V1,j in V2),则称图G为一个二分图。
  4. V1和V2为互补顶点子集
  5. 完全二部图:若V1中每个顶点均与V2中的顶点相邻,则G为完全二部图,记作Kr,s,r=|V1|,s=|V2|
  6. 匹配:任意两条边无公共顶点
  7. 最大匹配:G中边数最多的匹配
  8. |V1|<=|V2|,M是G的一个匹配且|M|=|V1|,则M称为V1到V2的完备匹配,当|V1|=|V2|时,又称为完美匹配
  9. 完备匹配是最大匹配,但最大匹配不一定是完备匹配
  10. 匹配边:M中的边
  11. 饱和点:与匹配边相关联的点
  12. 非饱和点:不与匹配边相关联的点
  13. 交错路径:由匹配边非匹配边交错构成的路径
  14. 可增广的交错路径:起点终点都是非饱和点的交错路径
  15. 证明不含可增广的交错路径:只要证明是最大匹配即可(M是二部图G的一个匹配,则M是G的最大匹配当且仅当G中不含关于M的可增广交错路径
  16. 平面图:如果能够把一个无向图G的所有结点和边画在平面上(平面嵌入),使得任何两条边不会在非节点处相交,则称G为平面图。
  17. K5,K3,3是非平面图
  18. 面:无限面(外部面),有限面(内部面)

(32)边界:包围每个面的所有边组成的回路组,边界的长度称为该面的次数,记作deg(R),R为面

(33)平面图所有面的次数之和等于边数的两倍(求无限面的次数时,用边数*2减去各有限面的次数更保险)

(34)极大平面图:若再G的任意两个不相邻的顶点之间加一条边,所的图为非平面图,则G为极大平面图

(35)极大平面图的充要条件:设G是n(n>=3)阶简单连通的平面图,当且仅当G的每个面的次数均为3.

(36)设G是n(n>=3)阶m条边的极大平面图,则m=3n-6;推论:设G是n(n>=3)阶m条边的简单平面图,则m<=3n-6

(37)极小非平面图:再非平面图G中任意删除一条边,所得为平面图,则G为极小非平面图

(38)欧拉公式:设连通图G的顶点数,边数和面数分别为n,m,r,则n-m+r=2

(39)推论:对于有K个连通分支的平面图G,有n-m+r=k+1

(40)定理:设G是连通的平面图,且每个面的次数至少为l(l>=3),则G的边数m与顶点数n有:m<=(l/l-2)(n-2)[用于证明非平面图]

(41)平面图的充要条件(证明不是平面图):当且仅当G中既不含与K5同胚的子图,也不含与K3,3同胚的子图

       

当且仅当G中既没有可以收缩到K5同胚的子图,也没有可以收缩到K3,3同胚的子图

  1. 点着色(着色):设无向图G无环,对G的每个顶点图一种颜色,使相邻的顶点颜色不同,称为图G的一种着色
  2. 若用k种颜色给G的顶点着色,则称G是k-着色的
  3. 偶圈用2种颜色,奇圈用3种,奇阶轮图用3种,偶阶轮图用4种
  4. 面着色,地图着色
  5. 对偶图p201
  6. 对偶图性质:设G*是连通平面图G的对偶图,n*,m*,r*和n,m,r分别为G*和G的顶点数,边数和面数,则有:n*=r,m*=m,r*=n(可以将地图的面着色转化为它的对偶图的点着色
  7. 任何平面图都可以是4-可着色的

  • 9
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值