python使用WordCloud绘制词云图

本文介绍了如何使用Python的WordCloud库和jieba分词工具来创建词云图,重点在于设置遮罩图片、字体路径以及调整词云参数。通过示例代码展示了从文本到词云图的完整过程,适用于数据可视化和文本分析。

python使用WordCloud绘制词云图

Python绘制词云图需要确保安装以下第三方库:

from matplotlib import pyplot as plt   #绘图,数据可视化
from wordcloud import WordCloud        #词云
from PIL import Image                  #图片处理
import jieba                           #结巴分词工具
import numpy as np                     #矩阵运算

制作词云图时,还需要一张白底的遮罩图片。我使用的是如下的图片:
在这里插入图片描述

完整代码如下:

from matplotlib import pyplot as plt   #绘图,数据可视化
from wordcloud import WordCloud        #词云
from PIL import Image                  #图片处理
import jieba                           #结巴分词工具
import numpy as np                     #矩阵运算

def cutWords(text):
    cut =
### 使用 Python 生成 WordCloud 图 为了创建词云图,通常会使用 `wordcloud` 库来处理文本数据并将其可视化为图像。以下是具体方法: #### 安装依赖库 首先需要安装必要的库,可以利用 pip 来完成这些操作。 ```bash pip install wordcloud matplotlib jieba ``` #### 导入所需模块 接着导入用于绘制图形以及中文分所需的包。 ```python from wordcloud import WordCloud import matplotlib.pyplot as plt import jieba ``` #### 准备文本数据 准备一段或多段文字作为输入源,这里假设有一个字符串变量 text 存储着待分析的文章内容[^1]。 ```python text = "在这里放置要分析的文字..." ``` 对于中文文本来说,在构建频统计之前还需要对其进行分割处理以便于后续计算频率分布情况;而对于英文则不需要额外的操作因为默认情况下已经能够很好地识别单边界了。 #### 创建自定义配置项 通过调整不同属性值可以让最终呈现出来的效果更加美观独特,比如更改字体文件路径使得汉字显示正常、设定画布大小或者改变配色方案等等[^2]。 ```python wc = WordCloud( font_path='simhei.ttf', # 设置字体路径以支持中文字符渲染 width=800, height=400, background_color="white" ).generate(' '.join(jieba.cut(text))) ``` 注意当处理非ASCII编码的语言时一定要指定合适的 TrueType 字体文件以免出现乱码现象影响观感体验。 #### 展示结果图表 最后一步就是调用 Matplotlib 的绘图函数把刚才制作好的对象展示出来供查看者欣赏啦! ```python plt.imshow(wc, interpolation='bilinear') plt.axis("off") # 关闭坐标轴刻度线 plt.show() ``` 这样就可以得到一张由关键构成的艺术化图案了,它直观地反映了文档里各个条的重要性程度差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值