论文阅读
文章平均质量分 94
sca1p31
这个作者很懒,什么都没留下…
展开
-
论文阅读——联邦忘却学习研究综述
作者:机构:期刊:计算机学报发表时间:2023 年 11 月 28 日解决问题:对目前现有的联邦忘却学习工作进行了综述。代码:综述无代码文章:http://cjc.ict.ac.cn/online/onlinepaper/wpf-202431151459.pdf数据已经成为与土地、劳动力、资本、技术等并列的重要生产要素之一. 利用数据分析挖掘数据的潜在 价值,有助于推动产业创新、技术升级和区域经济发展. 然而,在数据使用过程中,隐私泄露等风险限制了数据的 流通和共享. 因此,如何在数据流通和共享过程中保护数原创 2024-10-07 11:45:04 · 1418 阅读 · 0 评论 -
论文阅读——FedTP: 基于Transformer的个性化联邦学习
摘要部分文章主要说明了个性化联邦学习在解决客户端异构性的重要作用,但是在联邦学习中使用 transformer 模型的工作还不完善,没有讨论联邦学习的聚合算法对 self attention 的影响。在研究 transformer 在联邦学习中的效果的过程中,本文发现 fedavg 对 self attention 有负面影响。所以提出了基于 transformer 的联邦学习框架 FedTP,该框架在学习每个客户端的自注意力的同时,聚合客户端之间的其它参数。原创 2024-07-27 19:43:19 · 1197 阅读 · 1 评论 -
论文阅读——面向非独立同分布数据的车联网多阶段联邦学习机制
车联网环境下,多台车辆采集的数据通常是非独立同分布数据(non-IID),传统的联邦学习算法在non-IID数据中效果不够好。所以本文提出了FedWO,一种面向non-IID数据的车联网多阶段联邦学习机制。第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度。第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时使用传输控制策略,减少模型传输带来的通信开销。原创 2024-07-20 17:27:51 · 1008 阅读 · 0 评论 -
论文阅读——NetMamba:通过预训练单向 Mamba 进行高效网络流量分类
广泛使用的Transformer架构存在一个二次复杂度问题,对资源要求较高。Transformer丢弃了重要的字节信息而保留了不必要的偏置为了解决这些问题,文章提出了NetMamba,一个高效的线性时间状态空间模型(an efficient linear-time state space model),并且还设计了一个配套的流量表示方案,用于从数据中提取有效信息并去除有偏差的信息。最后文章在6个数据集进行了评估,将推理速度提高了60倍。原创 2024-07-10 19:16:46 · 1726 阅读 · 7 评论 -
论文阅读:BFLS:一个区块链+联邦学习的CTI共享模型
这篇论文核心也是联邦学习与区块链技术的结合,应用场景放在了CTI共享中。文章将深度学习的恶意流量检测模型的参数视为CTI,使用联邦学习进行共享,从情报共享的角度来进行文章的书写。那么在introduction与related work中就可以对CTI领域的研究进行概括总结,介绍自己的工作并进行对比,突出自己工作的创新与优点,并且形成一个表格进行清晰地对比。(从中我们可以学习到,我们如果做类似的工作可以放在其他的场景中,比如车联网CTI共享、IoT中的CTI共享等等。原创 2024-04-27 20:48:50 · 1278 阅读 · 1 评论 -
论文阅读:SoK Anti-Facial Recognition Technology
近年来,政府和商业实体迅速采用面部识别(FR)技术,引发了对公民自由和隐私的担忧。作为回应,一套广泛的所谓“反面部识别”(AFR)工具已经开发出来,以帮助用户避免不必要的面部识别。过去几年提出的AFR工具集范围广泛且发展迅速,有必要退一步考虑AFR系统的更广泛的设计空间和长期挑战。本文旨在填补这一空白,并提供了AFR研究景观的第一个全面分析。以FR系统的运行阶段为起点,我们创建了一个系统框架,用于分析不同AFR方法的优点和权衡。然后,我们考虑了AFR工具面临的技术和社会挑战,并提出了该领域未来研究的方向。原创 2023-11-21 09:46:42 · 723 阅读 · 1 评论
分享