【ROS】解决编译含有Python的ROS包遇到的 “Could NOT find PY_em (missing: PY_EM)“ 问题 使用ROS编译含有Python的ROS包时会遇到 “Could NOT find PY_em (missing: PY_EM)” 的错误。这个问题通常是由于ROS找不到正确的Python解释器而导致的。解决方法:通过指定正确的Python解释器路径来解决这个问题。Ubuntu系统的Python解释器通常位于 /usr/bin/python3。
報錯AttributeError: ‘GELU‘ object has no attribute ‘approximate‘ 問題出現環境:YOLOv8框架下導出onnx模型CUDA11.8torch2.0.1問題原因pytorch版本問題,我所使用的版本中的GELU函數沒有參數approximate解決方法定位到問題代碼段去掉approximate參數再運行不報錯,但要注意的是這個修改的是當前虛擬環境下的源文件,如果更換pytoch版本後可能會出現報錯,可以再使用完後再將其改回去
YoloV8网络缝合,更换rtdetr的backbone部分为RepVGG网络 首先修改ultralytics/nn/modules/__init__.py,在from .block import以及__all__中加入RepVGGBlock,更改后如下。将以上代码复制至ultralytics/nn/modules/block.py的最后,并在block.py最前端的__all__中加入。另外还需修改ultralytics/nn/modules/__init__.py以及ultralytics/nn/tasks.py。并在tasks.py的1019行后加入以下代码。
npy文件与txt文件相互转换 (直接在命令行输入python就行)注:具体转化格式还是要根据实际情况选择!#将数据保存到.txt文件,指定格式化符号为'%s'# 从.txt文件加载数据。# 保存数据为.npy文件。将npy文件转化成txt。#从.npy文件加载数据。将txt文件转化成npy。
COCO数据集标注由json格式转为yolo可识别的txt格式 由于coco数据的标注都在json文件中,而yolo读取的格式都是txt格式,所以需要手动转换。现在coco中存放了下载的数据集,现在要把新的转换后的数据集放入coco2017中。
RT-DETR学习笔记 文章主要针对的是在yolo后处理中的nms进行改进,nms,即非极大值抑制,其是在获得很多anchor后,对其进行筛选的一个方法,该方法也非常的需要算力,其执行事件主要取决于预测出的bbox数量,类别置信度阈值以及IOU的阈值,前者刨除低置信度得到预测框,后者则刨除针对同一物体的多个预测框中的较低得分者。
GNN学习笔记|AEGNN 在这个例子中,所有节点都属于同一个批次,因此批次信息是一个全零的张量。计算每个节点的平均边数量,并记录日志信息。他这里设置的batch_size是1,应该是一次导入一张图的意思吧,但是一张图的大小是120x100,event_counts是25000,不太理解。然后从dm中获得训练数据集,并设置dm.shuffle为false,确保在不同实验中样本顺序相同。然后再确定新的事件索引,并提取新的事件特征和事件位置,最后创建一个Data对象。先load数据集,再在setup中调整数据集的输入方式,最后训练模型。
GNN学习笔记|GCN 再对X做dropout处理,轻量化矩阵后,再过第二个GCN层,和第一个GCN层一个方式,先右乘一个权重矩阵,再左乘一个邻接矩阵,最后做softmax处理,进行分类。第一层GCN,输入特征矩阵features即为X,乘上的权重矩阵为W,然后再左乘一个邻接矩阵A-hat,最后对其再套一个激活函数Relu。然后对特征矩阵和邻接矩阵做归一化处理,对邻接矩阵的归一化处理可以避免对度很小的节点进行训练时出现梯度爆炸或消失的问题。然后再求一下训练的准确度,对算出的loss进行反向传播,再进行随机梯度下降,优化权重参数。
GNN学习笔记|Deepwalk 然后对读取的有向图G进行deepwalk,这里的deepwalk是对每个点进行一定次数和一定长度的随机游走,游走完之后会得到一些序列,这里会对每个点都进行随机游走。然后将得到的序列塞入Word2Vec模型中进行训练,这个模型会基于序列抽取点与点之间的共现关系得到点的embedding,我的理解是点的特征向量,这些embedding就包含了点的位置信息。这个evaluate是评估embedding的质量,与label中进行比较,label中对各个点进行了分类。先读取图的信息,从txt中获取各条边的信息。
Pytorch中使用tensorboard出现TensorFlow installation not found - running with reduced feature set.的错误 运行后,找到最底层文件夹地址复制,然后拉到anaconda命令行下运行。在anaconda的命令行下下载tensorboard。下载完后打开jupyter,输入测试代码。
ros命令 是ROS(Robot Operating System)中用于管理和检查服务(services)消息类型的一个命令行工具。服务在ROS中用于实现客户端-服务器之间的请求-响应通信模式。命令可以查看指定服务消息的结构,包括请求(request)和响应(response)部分的数据类型和字段。
ubuntu source /opt/ros/noetic/setup.bashsource ~/catkin_ws/devel/setup.bashsource ~/rm_eng/devel/setup.bash