高维中介数据:基于贝叶斯推断的因果中介效应估计方法

本文探讨了一种基于贝叶斯推断的高维中介效应估计方法,特别适合omics研究中的大量潜在中介变量分析。通过连续收缩先验,该方法能有效处理高维数据,提高统计功效,识别非零中介变量,理解无活性中介变量的结构。介绍了条件模型、全局间接效应的度量、贝叶斯稀疏线性混合模型(BSLMM)以及在实际操作中需要注意的易错点。
摘要由CSDN通过智能技术生成

摘要

该博客介绍一种基于贝叶斯推断的高维因果中介效应估计方法,适用于omics研究中的大量潜在中介变量分析。在贝叶斯框架下,利用连续收缩先验扩展了传统的因果中介分析技术,以处理高维数据。这种方法提高了全局中介分析的统计功效,并能有效地识别对路径中介效应有贡献的非零中介变量。此外,它有助于理解无活性中介变量的复合零情况结构

所需的识别假设

无测量混淆(unmeasured confounding)是指在分析因果效应时,假设没有未被观测到的变量能够同时影响暴露因素(例如,某种治疗或干预)和结果变量,从而导致估计的效应偏倚。在这个上下文中,假设(3) 表示对于暴露因素对所有中介变量的影响,不存在未测量的混淆变量。换句话说,没有未知的第三变量既影响暴露又影响中介变量。

时间顺序假设(temporal ordering assumption)是因果推理的基础,它要求暴露发生在中介变量之前,而中介变量又发生在结果之前。这确保了因果关系的方向性,即暴露导致中介变量的变化,接着中介变量的变化影响结果。在上述内容中,这一假设确保了暴露先于中介变量,中介变量再先于结果的发生,避免了反向因果关系或同时发生的误导。

条件模型,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探路者Myra

童叟无欺,愿者上钩,感恩认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值