摘要
该博客介绍一种基于贝叶斯推断的高维因果中介效应估计方法,适用于omics研究中的大量潜在中介变量分析。在贝叶斯框架下,利用连续收缩先验扩展了传统的因果中介分析技术,以处理高维数据。这种方法提高了全局中介分析的统计功效,并能有效地识别对路径中介效应有贡献的非零中介变量。此外,它有助于理解无活性中介变量的复合零情况结构
所需的识别假设
无测量混淆(unmeasured confounding)是指在分析因果效应时,假设没有未被观测到的变量能够同时影响暴露因素(例如,某种治疗或干预)和结果变量,从而导致估计的效应偏倚。在这个上下文中,假设(3) 表示对于暴露因素对所有中介变量的影响,不存在未测量的混淆变量。换句话说,没有未知的第三变量既影响暴露又影响中介变量。
时间顺序假设(temporal ordering assumption)是因果推理的基础,它要求暴露发生在中介变量之前,而中介变量又发生在结果之前。这确保了因果关系的方向性,即暴露导致中介变量的变化,接着中介变量的变化影响结果。在上述内容中,这一假设确保了暴露先于中介变量,中介变量再先于结果的发生,避免了反向因果关系或同时发生的误导。