探路者Myra
生命有限,知识无价,不喜勿买~~
展开
-
使用参数回归模型进行四向分解的Stata命令:Med4way
Med4way 使用参数回归模型来估计在暴露可能与之相互作用的中间体存在下暴露对结果的总影响的四向分解的组成部分。这种分解将公开对结果的总体影响分解为以及的组件。Med4way 使用 delta 方法(默认)或 bootstrap 为估计的组件提供标准错误和置信区间。Med4way 允许连续、二进制、计数或生存结果,以及连续或二进制介质。原创 2024-07-10 15:01:53 · 251 阅读 · 0 评论 -
组基轨迹建模 GBTM的介绍与实现(Stata 或 R)
组基轨迹建模(Group-Based Trajectory Modeling,GBTM)(旧名称:Semiparametric mixture model)历史:由DANIELS.NAGIN提出,发表文献《Analyzing Developmental Trajectories:A Semiparametric,Group-Based Approach》GBTM能够将一群人的轨迹分类并生成数个具有代表性的运动轨迹模型,然后对每个轨迹模型进行分析,以了解人们的运动特征、生理水平和风险等级等。原创 2024-03-05 09:08:32 · 6543 阅读 · 0 评论 -
多轨迹建模方法的介绍与实操-基于R语言
本文介绍了,这是一种扩展了单指标组基轨迹建模的技术,用于分析多个疾病生物标志物或临床重要因素的联合轨迹,以更好地理解和追踪疾病进程、行为或健康状态的变化。多轨迹建模利用有限混合模型,识别出遵循相似多指标轨迹的个体群体。这种方法克服了传统统计分析在处理多变量纵向数据时的局限性,允许同时分析多个相关指标。通过两个示例展示了该模型的实施过程和应用。原创 2024-03-08 14:43:55 · 2093 阅读 · 0 评论 -
高维中介数据:基于贝叶斯推断的因果中介效应估计方法
该博客介绍一种基于贝叶斯推断的高维因果中介效应估计方法,适用于omics研究中的大量潜在中介变量分析。在贝叶斯框架下,利用扩展了传统的因果中介分析技术,以处理高维数据。这种方法提高了全局中介分析的统计功效,并能有效地识别对路径中介效应有贡献的非零中介变量。此外,它有助于理解无活性中介变量的复合零情况结构。原创 2024-03-02 17:13:15 · 684 阅读 · 2 评论 -
R 贝叶斯输出分析和诊断MCMC:coda包——理论篇
例如,`thin=2`意味着保留每个偶数迭代的样本,而丢弃奇数迭代的样本,以此来减少数据量并可能减少样本间的相关性。在R的`mcmc`对象中,`thin`属性给出了两个连续采样值之间的这个间隔。默认情况下,在 R 中,如果 `dev.interactive()` 返回 `TRUE`,或者在 S-PLUS 中,如果 `interactive()` 返回 `TRUE`,那么将会询问用户。`auto.layout` 是一个布尔参数,如果设置为 `TRUE`,则会为绘图设置自己的布局;否则,将使用现有的布局。原创 2024-02-29 02:00:00 · 1823 阅读 · 0 评论 -
贝叶斯核机器回归拓展R包:bkmrhat
2.1 包介绍提供了扩展bkmr包的贝叶斯核机器回归工具支持多链推断和诊断利用futurerstancoda包函数书写格式:as.mcmc()将bkmrfit对象转换为coda包的MCMC对象coda 包支持许多不同类型的单链 MCMC 诊断,包括 geweke.diag、traceplot 和 effectiveSize。还可以使用后总结,例如 HPDinterval 和summary.mcmc。用于进行单链MCMC诊断和后验概括。原创 2024-02-26 13:01:10 · 2201 阅读 · 0 评论 -
贝叶斯统计——入门级笔记
当把样本视为随机变量时,它有概率分布,称为总体分布. 如果我们已经知道总体的分布形式这就给了我们一种信息,称为总体信息。原创 2024-02-20 21:35:52 · 1435 阅读 · 1 评论 -
贝叶斯统计——2. 先验分布的选取
边缘分布指的是多维随机变量的联合分布在某些变量上的边际(margin)分布。当我们有多个随机变量的联合分布时,我们可以通过对其中一部分变量进行积分或求和的方式得到另一部分变量的边缘分布。边缘分布提供了在我们关注的变量子集上的概率分布信息,有助于简化复杂的多维统计问题。边缘分布可以从多维分布的联合概率密度函数(或联合概率质量函数)中获得。具体地,对于两个随机变量X和Y的联合分布,边缘分布可以通过对联合分布函数关于未关注的变量求积分或求和得到。例如,对于二维连续分布,边缘分布可以通过积分来消除另一个变量;原创 2024-02-20 22:25:21 · 1605 阅读 · 1 评论 -
贝叶斯统计——3. 常用统计模型参数的后验分布
然后,我们将这个估计值作为先验分布中的均值,并使用贝叶斯定理结合先验分布和似然函数来计算后验分布。假设先验分布为正态分布(或柯西分布),其均值为先验均值的先验分布和方差为先验方差。根据具体的先验分布和似然函数,对后验分布进行进一步计算,得到后验分布的参数和形式。1. 当参数0的先验分布为无信息先验时的后验分布。1. 当参数的先验分布为无信息先验时的后验分布。1. 当参数的先验分布为无信息先验时的后验分布。2. 当参数的先验分布为共扼先验时的后验分布。2. 当参数的先验分布为共辄先验时的后验分布。原创 2024-02-20 23:13:50 · 1415 阅读 · 1 评论 -
贝叶斯统计——4. 贝叶斯统计推断
的可信水平为的贝叶斯可信区间 (Bayesian credible interval), 常简称为的可信区间,而满足称为0 的可信水平贝叶斯可信下限(Bayesian lower credible limit)称为0 的可信水平的贝叶斯可信上限(Bayesian upper credible limit)原创 2024-02-21 11:23:26 · 1073 阅读 · 0 评论 -
贝叶斯统计——5. 贝叶斯统计决策
通常使用后验概率密度函数来评估各种决策结果的不确定性。后验概率密度函数表示在观测到一些数据或证据后,我们对不同决策结果的概率分布的更新。通过将后验概率密度函数与特定的损失函数结合,我们可以计算出每个决策结果的风险。因此,可以说在贝叶斯决策理论中,我们可以使用后验概率密度函数来评估决策结果的不确定性并计算后验风险。Minimax准则是一种决策准则,用于在不确定性环境下进行决策。它旨在最小化最坏情况下的损失或风险。该准则适用于需要在不确定性条件下做出决策的情况,其中决策者关注最坏情况下可能发生的最大损失。原创 2024-02-21 13:32:16 · 1011 阅读 · 0 评论 -
贝叶斯统计——6. 贝叶斯统计计算方法
平稳性是指链的状态分布在经过足够长时间后保持不变的性质。一个马尔可夫链的平稳性取决于其概率转移矩阵和初始状态分布。具体来说,如果在马尔可夫链的状态分布经过多次转移后,达到的状态分布不再改变,那么对应的概率分布被称为平稳分布平稳分布(stationary distribution):是指在马尔可夫链中存在一个稳定的概率分布,使得在经过足够长的时间后,马尔可夫链的状态分布不再改变,保持在该稳定分布下。简而言之,平稳分布是表示在长时间内系统的状态分布趋于稳定的概率分布。原创 2024-02-21 13:01:39 · 1191 阅读 · 0 评论 -
贝叶斯核机回归-因果中介分析 (BKMR-CMA)causalbkmr R包
基础BKMR模型首先,对于中介变量Mi的模型(12): [ Mi = β0 + ℎM Ai + ϵMi ]然后,对于健康结果Yi的模型(13): [ Yi = θ0 + ℎY Ai, Mi + ϵYi ]最后,对于总效应的混合物模型(14): [ Yi = γ0 + ℎTE Ai + ϵTEi ]组件选择的BKMR模型当暴露混合物包含多个变量时,会采用组件选择来简化模型表示。原创 2024-02-21 09:30:56 · 3428 阅读 · 0 评论 -
贝叶斯核机回归估计混合物健康效应 【BKMR包】——实操篇
使用 ggplot2包绘制 h 的截面# 绘制总体风险摘要。原创 2024-02-21 21:07:57 · 3898 阅读 · 0 评论 -
贝叶斯核机回归估计混合物健康效应 【BKMR】——理论篇
数据准备:首先,需要准备输入变量(特征)和输出变量(目标)。这些数据可以是连续型、离散型或二元型。决定核函数:为了处理非线性关系,BKMR使用核函数来转换输入变量。常用的核函数包括线性核、多项式核和径向基函数(RBF)核等。确定先验分布:在贝叶斯框架下,需要指定先验分布来表示模型参数的不确定性。常用的先验分布包括高斯分布、拉普拉斯分布和柯西分布等。模型构建:通过将输入变量通过核函数映射到高维空间,可以建立核机器回归模型。同时,通过贝叶斯推理方法来学习模型参数和预测后验分布。原创 2024-02-21 19:19:40 · 5604 阅读 · 0 评论