大数据数据分析:R语言
文章平均质量分 78
如果你正在寻找解决中介变量是高维的问题的有效方法,那么这份知识专栏是你必备的工具。我们将逐步介绍多种高维中介分析模型,并详细讲解它们的应用和优劣势。无论你是从事社会科学、医学还是统计学领域的研究,这份专栏都将给你带来全新的视角和的启示。
探路者Myra
生命有限,知识无价,不喜勿买~~
展开
-
使用参数回归模型进行四向分解的Stata命令:Med4way
Med4way 使用参数回归模型来估计在暴露可能与之相互作用的中间体存在下暴露对结果的总影响的四向分解的组成部分。这种分解将公开对结果的总体影响分解为以及的组件。Med4way 使用 delta 方法(默认)或 bootstrap 为估计的组件提供标准错误和置信区间。Med4way 允许连续、二进制、计数或生存结果,以及连续或二进制介质。原创 2024-07-10 15:01:53 · 236 阅读 · 0 评论 -
常用安装R包
【代码】常用安装R包。原创 2024-04-25 15:59:31 · 722 阅读 · 0 评论 -
蛋白质相互作用
这些算法用于从蛋白质相互作用网络中识别蛋白质群组或模块。原创 2024-04-25 14:32:51 · 364 阅读 · 0 评论 -
高维多元中介分析:另外8种方法
用基于似然的方法来计算中介主方向 (“principal directions of mediation” ,PDM),它是加载权重,用于线性组合输入的中介以形成单个潜在变量,以替换分析中的原始中介。虽然 HDMM 不能用于估计全局中介效应或特定中介的贡献,但它仍然可以用于推断是否存在通过作为联合系统的中介集合发生的中介。适用于存在高维中介和一个或多个曝光时的中介设置。该函数返回直接效应、总效应和全局中介效应的估计值,最后一个效应用报告的 p 值检验统计显着性。原创 2024-03-10 10:14:35 · 551 阅读 · 0 评论 -
中介分析——R包
包名:潜变量分析用途:拟合多种潜变量模型,包括验证性因子分析、结构方程建模和潜变量增长曲线模型。原创 2024-02-09 03:58:40 · 2502 阅读 · 1 评论 -
高维中介数据:先介绍两种中介分析方法
该模型假设中介-结果关联 (βm) 和暴露中介关联 (αa) 独立遵循小方差和高方差正态分布的混合,并且如果中介 Mj 同时具有 (βm)j 和 (αa) j 属于较大方差分布,与其他分布相比,它具有显着较大的中介贡献。每个中介属于两个较大方差分布的后验包含概率 (PIP),即下述分析的out$contributions$ab_pip, 它可以被理解为每个中介变量在同时具有显著的暴露-中介关联(αa)和中介-结果关联(βm)时的概率。原创 2024-03-06 14:41:53 · 575 阅读 · 0 评论 -
高维中介数据【R语言中介分析】:应用确定独立筛选SIS,极小极大凹惩罚技术,dblasso
允许基于高级中介筛选和惩罚回归技术来估计和测试高维中介效应。原创 2024-02-20 12:30:22 · 1684 阅读 · 1 评论 -
高维中介数据:基于贝叶斯推断的因果中介效应估计方法
该博客介绍一种基于贝叶斯推断的高维因果中介效应估计方法,适用于omics研究中的大量潜在中介变量分析。在贝叶斯框架下,利用扩展了传统的因果中介分析技术,以处理高维数据。这种方法提高了全局中介分析的统计功效,并能有效地识别对路径中介效应有贡献的非零中介变量。此外,它有助于理解无活性中介变量的复合零情况结构。原创 2024-03-02 17:13:15 · 664 阅读 · 2 评论 -
高维中介数据:基于交替方向乘子法(ADMM)的高维度单模态中介模型的参数估计(入门+实操)
用于高维度单模态中介模型的参数估计,采用交替方向乘子法(ADMM)进行计算。该包提供了确独立筛选(SIS)功能来提高中介效应的敏感性和特异性,并支持Lasso、弹性网络、路径Lasso和网络约束惩罚等不同正则化方法。原创 2024-03-03 12:18:54 · 1077 阅读 · 0 评论 -
高维中介数据: 联合显着性(JS)检验法
中介分析在流行病学和临床试验中越来越受到关注。在现有的中介分析方法中,流行的联合显着性(JS)检验会产生过于保守的 I 类错误率,因此功效较低。但是,如果在使用 JS 测试高维中介假设时,可以准确控制族错误率 (FWER) 和错误发现率 (FDR)。分析的核心是基于估计三个分量零假设的比例并推导的相应混合分布。原创 2024-03-04 10:28:02 · 652 阅读 · 0 评论