猴痘数据分析 本次项目将通过python和九数云工具分析全球猴痘数据,提高人民群众对猴痘的警惕和对自身的保护,本文将围绕全球猴痘数据,剖析猴痘疫情的影响和危害,为人民敲响警钟,积极做好猴痘疫情防控和自身保护。
爬虫第二天 安全套接层:SSL第三方的CA数字证书(HTTPS相对于HTTP多了一个加密证书,http端口:80,https端口443)urlopen为什么可以请求数据:handler处理器。不⽀持代理的添加,所以我们需要自定义这个功能。handler: 系统的urlopen()模拟真实的浏览器发送请求。也不知道我们使⽤了代理。对⽅不知道我们真实的。对⽅不知道我们真是的。
爬虫第一天 http的请求方式getpost请求put请求(不完全)delete(删除一些信息)head(请求头发送⽹络请求需要带⼀定的数据给服务器不带数据也可以请求头⾥⾯Accept:⽂本的格式编码格式⻓链接短链接Cookie:验证⽤的Host:域名Referer:标志从哪个⻚⾯跳转过来的浏览器和⽤户的信息返回数据:response。
棋牌游戏用户流失预测——Xgboost调参 本项目通过对棋牌游戏数据的探索,通过python数据处理以及可视化,最后进行数据建模预测,整个项目分为项目目的的确定、数据的预处理、对数据的分析和项目总结这五个部分。
SQL+Tableau化妆品数据分析 本项目通过对化妆品10月、11月、12月、1月、2月的用户行为数据的探索,通过SQL数据处理以及tableau可视化,整个项目分为项目目的的确定、数据的预处理、对数据的分析和项目总结这五个部分。
天猫订单数据综合分析 一、项目介绍本项目通过对天猫成交数据的探索,通过python对数据预处理,整个项目分为项目目的的确定、数据的预处理、对数据的分析和项目总结这五个部分。(本项目参考微信公众号凹凸数据)二、项目流程项目目的从结果指标出发确定目标,通过过程指标定位问题,提出合理建议数据来源本数据集来源于和鲸社区一共收录了发生在一个月内的28010条数据数据字段:'订单编号', '总金额', '买家实际支付金额', '收货地址 ', '订单创建时间', '订单付款时间 ', '退款金额'共7个字段
R语言建立ARIMA模型预测数据 目录确定研究目的以及确定因变量和自变量数据预处理判断有无缺失值创建时间序列平稳性检验季节性处理白噪声检验模型选取与模型评估最终模型与预测结论确定研究目的以及确定因变量和自变量研究目的:建立ARIMA模型,预测接下来的 14 天的数值。数据预处理判断有无缺失值发现存在七个缺失值,用对应序列平均值填充,观察缺失值位置,发现数据出现连续缺失,故取数据前后间隔一个点,取两点的平均值填充。创建时间序列以7天为一周期,观察序列图,发现数据呈
R语言建立指数平滑模型预测数据 确定研究目的以及确定因变量和自变量研究目的:建立指数平滑模型,预测接下来的 14 天的数值。目录确定研究目的以及确定因变量和自变量数据预处理缺失值处理创建时间序列分割训练集和测试集简单指数平滑法构建模型霍特模型AAN(相加误差,相加趋势,无季节性)温斯特模型AAA(相加误差,相加趋势,有季节性)最终模型与预测数据预处理缺失值处理发现存在七个缺失值,用对应序列平均值填充,观察缺失值位置,发现数据出现连续缺失,故取数据前后间隔一个点,取两点的平均值..
R语言构建多元线性回归模型预测汽车的耗油效率 目录确定研究目的以及确定因变量和自变量数据预处理缺失值处理异常值处理估计回归模型参数,建立模型判断数据是否满足多重线性回归假设条件(1)、线性(2)、独立性(3)、正态性(4)、方差齐性(5)、消除异方差对模型进行回归检验预测确定研究目的以及确定因变量和自变量研究目的:建立多元线性回归模型,预测汽车的耗油效率 MPG。本次实验的 basic 数据集包含 1 个因变量(mpg)和 5 个自变量(cylinders, displaceme...
拉勾招聘数据分析 一、项目背景毕业季的到来,每个大学生也引来了自己的就业问题,应该去怎样的城市,公司的融资水平,公司的规模,薪资水平,工作经验等都是每个大学生头疼的问题,为了更好的方便就业,用数据说话,本篇通过11个城市的招聘信息,从公司规模,薪资水平,工作经验分析就业选择。二、项目介绍本项目主要是以拉勾招聘网对11个城市的招聘信息分析,主要通过tableau和sql分析,整个项目可分为项目目的的确定,数据来源,数据分析,项目总结(因数据处理是,没有重复值和缺失值,所以不做此步骤)。三、项目流程项目目的