前言:
本章将讨论尽可能简单的白话的逻辑回归(尽量降低数学要求)。我自己琢磨了好多天,也没有琢磨透彻,只能记录一下自己的理解和思路。(一)中不包含梯度下降和牛顿拉弗森,如果是来看这两部分的同学,请关注后续两篇。
1.什么是分类任务?
以西瓜书中的西瓜问题为例,我们走到水果店想要买一个西瓜。我们只能通过一些外部特征来挑选西瓜,比如颜色,根蒂,拍击声。假设我们已经买了一万个西瓜,记录他们的颜色,根蒂,拍击声,再切开它们记录瓜瓤的颜色和味道。将西瓜分为两类:甜的瓜为好瓜(记为1),不甜的坏瓜(记为0)。并将这些数据丢进学习器进行学习,当我们下一次去水果店买西瓜的时候的时候,通过外部特征我们就可能能够预测出那个西瓜是好的(1)那个西瓜是不好(0)的,这就是分类任务。
2. 什么是逻辑回归?
逻辑回归算法的英文是Logistic Regression,这是一个基于回归的办法来做分类的算法,本文的逻辑回归讨论的是二分类问题(0或者1)。回归家族是算法中的一员大将,其中有很多我们耳熟能详的回归,比如简单线性回归(SLR),多元线性回归,多项式回归等等。打个比方,我们知道一群人的数据,包括他们的体重(y),运动量(x1),每日摄入卡路里(x2),我们能构建一个回归模型来通过预测新样本的体重。这里的多元

本文介绍了逻辑回归的基本概念,包括分类任务的定义、逻辑回归的原理、阀值的作用,以及逻辑回归与回归的区别。重点讲解了逻辑回归的损失函数——交叉熵损失函数,并引入了极大似然估计作为求解权重的方法。文中通过西瓜问题举例,帮助理解逻辑回归在实际问题中的应用。
最低0.47元/天 解锁文章
1600

被折叠的 条评论
为什么被折叠?



