机器学习之探索学习曲线learning curve

本文探讨了机器学习中的学习曲线,通过图形展示训练集和验证集的误差,揭示模型在不同数据量下的表现,帮助诊断过拟合和欠拟合问题。通过对学习曲线的分析,可以指导我们优化模型参数和选择合适的数据量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.tree import DecisionTreeClassifier as DTC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
from time import time
import datetime
import warnings
warnings.filterwarnings("ignore")

def plot_learning_curve(estimator,title,x,y,ax,ylim= None,cv = None,n_jobs= None
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值