【学习笔记】线性回归:Lasso和Ridge的区别

老会记不住这两个的区别

Lasso:在常规的loss function后面加一个L1范式。
惩罚项越大意味着模型越简单,越来越多的特征系数被压缩到0,当惩罚项无限大的时候,只剩一个常数项,此时bias大variance小;惩罚项越小意味着模型越复杂,当惩罚项为0时,Lasso和OLS是一样的。
Lasson即可以做特征选择,也可以做压缩。
当两个或多个特征相关时,Lasso会选把其余的特征都压缩为0,只剩一个特征,所以lasso是可以解决多元共线性的问题(ridge也可以)

Ridge:只能做压缩。因为Ridge不会把特征系数压缩到0,只会无限的趋紧于0。
在常规的loss function后面加一个L2范式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值