作为tensorflow初学的大三学生,本次课程作业的使用猫狗数据集做一个二分类模型。
目录
一,数据集介绍
二,数据导入
三,数据集构建
四,模型搭建
五,模型训练
六,模型测试
一,猫狗数据集数目构成
| train | cats:1000 ,dogs:1000 |
|---|---|
| test | cats: 500,dogs:500 |
| validation | cats:500,dogs:500 |
二,数据导入
train_dir = 'Data/train'
test_dir = 'Data/test'
validation_dir = 'Data/validation'
train_datagen = ImageDataGenerator(rescale=1/255,
rotation_range=10,
width_shift_range=0.2, #图片水平偏移的角度
height_shift_range=0.2, #图片数值偏移的角度
shear_range=0.2, #剪切强度
zoom_range=0.2, #随机缩放的幅度
horizontal_flip=True, #是否进行随机水平翻转
# fill_mode='nearest'
)
train_generator = train_datagen.flow_from_directory(train_dir,
(224,224),batch_size=1,class_mode='binary',shuffle=False)
test_datagen = ImageDataGenerator(rescale=1/255)
test_generator = test_datagen.flow_from_directory(test_dir,
(224,224),batch_size=1,class_mode='binary',shuffle=True)
validation_datagen = ImageDataGenerator(rescale=1

本文是一位大三学生使用TensorFlow进行深度学习的实践,通过猫狗数据集构建了一个二分类模型。介绍了数据集介绍、导入、构建,模型搭建、训练和测试的过程。在测试阶段,模型正确率为0.67,可能存在过拟合,建议增加数据增广或调整训练数据来优化模型。
最低0.47元/天 解锁文章
923

被折叠的 条评论
为什么被折叠?



