统计学
01 | 绪论
1.基础概念
① 统计总体、总体单位和样本
- 统计总体简称总体
- 构成 总体 的 这些 具有 某种 共同性质的个别事物就是总单位例如, 研究学生的素质状况,学生构成统计总体,每一个大学生为总体单位。
- 总体中按随机的原则抽取 一部分总体单位构成的整体,称为样本
② 总体参数与样本统计量
- 总体参数简称参数,包括平均数、总体标准差、总体比例等
- 样本统计量简称统计量,是根据样数据计算的。抽样的目的是估计总体参数
③ 变量
- 变量反映总体单位特征或属性,比如 某职工的性别为女,年龄 …,工龄 …,这里性别、年龄、工龄和月工资为变量
- 变量按其取值是否连续,可分为离散变量和连续变量
- 变量按其性质可分为确定性变量和随机变量
2.统计调查-抽样调查
① 简单随机抽样
对总体不作任何处理,不进行分类也不搞排队,直接从总体中按随机原则抽样
② 分层抽样
对总体按一定的标志 加以分类( 层),然后从各个层次中随机抽样
③ 系统抽样
系统抽样是对总体按一定的顺序 排列,在规定的范围内随机抽取起始单元,按一定的间隔抽样
④ 整群抽样
整群抽样是将总体分为若干群,以 群为单位,从总体抽取若干个群为样本,对选中群进行全面调查
⑤ 多阶段抽样
在抽样调查抽选样本时并不是一次性抽取样本, 而是分两个或 两个以上的 阶段进行
3.统计实验
统计实验不仅是搜集数据的一种 方式,更是一种研究方法。基本逻辑是归因,通过调整 和控制影响 实验对象的某些变量并测量操纵的结果, 来探求 实验对象变化的因果关系
4.统计误差
① 登记性误差
② 代表性误差(抽取的样本代表性不够)
---------------------------------------------------------------------------
02 | 描述统计
1.集中趋势统计
① 平均值
② 众数
③ 中位数

2.离散程度统计
① 极差
以变量数列中的两个极端的标志值之差表示,反映数列中标志值变动的范围
② 四分位差
把变量值按从小到大的顺序排列,将这列数据分为四等分,形成 的3 个分割点称为四分 位数
记为 Q1、Q2、Q3。四分位差就是Q3 - Q1
③ 平均差
④ 方差、标准差
方差是各变量值与其平均数离差平方的平均数。标准差是方差的平方根。标准差也是根据全部 数据 计算 的,能够反映每个数据与其平均数的平均差异程度
⑤ 离散系数
import numpy as np
# 离散系数 cv = std / mean
def coefficient_of_variation(data):
mean = np.mean(data)
#计算平均值
std=numpy.std(data,ddof=0)
#计算标准差
cv=std/mean
return cv
data_test_1 = [1,2,3,4,5,6,7

本文介绍了统计学的基础知识,包括统计总体、样本、变量和统计调查方法如简单随机抽样、分层抽样。此外,还讨论了描述统计中的集中趋势和离散程度指标,如平均数、中位数、方差和标准差,以及统计误差的类型。进一步探讨了抽样分布、参数估计和假设检验的概念,提供了统计实验和应用实例。
最低0.47元/天 解锁文章

365

被折叠的 条评论
为什么被折叠?



