- 博客(60)
- 收藏
- 关注
原创 pycharts—地区年度GDP统计统计
目录01 | pycharts简介02 | 数据来源03 | 代码演示04 | 可视化01 | pycharts简介1.简介pyecharts 是一个用于生成 Echarts 图表的python库。它实际上就是 Echarts 与 Python 的结合。使用 pyecharts 可以生成独立的网页、图片等。也可以在 flask , Django 中集成使用。2.pyecharts包含的图表 Bar(柱.
2021-04-12 16:44:50
701
原创 Pandas常用功能
目录01 | Pandas 1.rename01 | Pandas1.renamedf2.rename(columns = {'PassengerId':'乘客编号','Survived':'存活情况'},inplace = True) #存活1,死亡0
2021-03-20 11:38:41
717
原创 数据分析面试题
1.描述身高与体重之间的关系,应该采用什么图形来表现( )A.直方图 B.散点图 C.条形图 D.环形图身高体重属于定量变量,散点图可以用来表现两个定量变量之间是否存在某种相关关系直方图适用单个变量,可以直观展现三个特征:集中趋势、离散程度、分布状态条形图、环形图适用于单个变量,可以直观观测到数据的频数跟占比情况2.某学校男生升学率下降,女生升学率下降,那么总体升学率( )A.增加
2021-03-16 21:04:27
926
1
原创 LinearRegression——TESLA股价分析
1.导入需要的库import pandas as pdimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import train_test_splitfrom sklearn import metricsplt.rcParams['font.sans-serif'] = ['SimHei']2.读取数据 / 数据预览 .
2021-03-08 15:24:15
253
原创 Sql-课程成绩练习(50道)
目录01 | 表格 字段02 | 插入数据03 | 表格数据概况04 | 练习01 | 表格 字段–1.学生表Student(s_id,s_name,s_birth,s_sex) –学生编号,学生姓名, 出生年月,学生性别–2.课程表Course(c_id,c_name,t_id) – –课程编号, 课程名称, 教师编号–3.教师表Teacher(t_id,t_name) –教师编号,教师姓名–4.成绩表Score(s_id,c_id,s_score) –学生编号,课程编号,
2021-03-01 14:49:46
435
原创 描述统计—AppStore app分析
数据来源https://pan.baidu.com/s/1WSWlp9bFSf7SqYNk9wW1Zw提取码: 6qmj目录01 | 项目简介02 | 数据处理03 | 可视化01 | 项目简介1.项目内容本项目是通过app store的数据,对苹果商店app的热度、分布情况进行一个描述统计分析。主要是手段利用python进行数据的预处理,通过power bi对结果进行可视化操作。2.数据介绍通过word或者excel打开数据,发现其中共有16个字段。字段对应.
2021-02-07 14:28:55
852
原创 java 基础
目录01 |变量和常量02 |01 |变量和常量1.第一个程序hello world//java最小单位是class,程序最少有一个classpublic class Myfirst_javaprogram { public static void main(String [] args) {//-java程序入口是main(格式固定)//输出控制语句为System.out.println("输出内容"); System.out.println("hello world".
2021-01-17 23:22:54
171
1
原创 HTML & CSS基础
目录01 | 前端简介02 | HTML简介01 | 前端简介1.软件开发类型:C/S B/S2.软件开发流程-网页设计师根据需求出图-前端工程师将图制作成网页-后端工程师改为动态 / 前端自己改 /给后端提需求,用接口改3.前端组成4.所需工具-浏览器-编辑器:记事本、NotePad++、HBuilder-调试工具:FireBug-图片工具:photoshop02 | HTML简介1.HTML基本格式①包含标签html和子标签head,body<h.
2021-01-13 17:31:18
163
原创 python算法基础与数据结构
目录01 | 算法基础概念01 | 算法基础概念1.算法概念算法(Algorithm):一个计算过程,解决问题的方法程序=数据结构+算法2.时间复杂度评估算法运行效率`# 不同算法运行效率不同 print('Hello World')for i in range(n): print('Hello World')for i in range(n): for j in range(n): print('Hello World') 3.空间复杂度评.
2021-01-05 17:44:30
307
4
原创 火锅店日销售情况可视化
所需数据链接: https://pan.baidu.com/s/1lWXVGr8y3Z2JF3bx5OU6Lw 提取码: xpu7 目录1.项目简介2.数据简介3.数据预处理4.数据可视化1.项目简介这是一家火锅店一天的流水信息,其中包括三个excel表格,覆盖了包括收入、客流等内容。我们通过对数据的筛选以及统计,来获得所需要的信息,实现数据的可视化。2.数据简介打开网盘里的文件夹,其中共有‘表结构信息’、‘order’、‘bill’、‘shop’四个表格,‘表格结构信息
2021-01-04 10:48:35
879
2
原创 爬虫01:爬取豆瓣电影TOP 250基本信息
# coding:utf-8from urllib import requestfrom lxml import etreeimport urllibdef page (i): url = 'https://movie.douban.com/top250?start=%d&filter=' % (25*i) head ={ 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1;WOW64) AppleWebKit/537.36
2020-12-29 00:31:11
469
原创 京东app产品分析
目录01 | 如何分析app页面02 | 整体数据的分发效率01 | 如何分析app页面1.引流(场)首页作为最大带量单位,分发效率如何评估2.漏斗(货)北极星指标交易额只是数字,重点在于理解数字转化过程3.用户(人)成熟的app中,老用户相对稳定,应该考虑新用户获取怎么优化02 | 整体数据的分发效率分发效率的评估除了要关注日活、留存、渗透率等常规指标外,还要找到能反映产品问题的指标。比如 CTR 和人均访问页面数,这两个指标就能很好反映产品问题。CTR:CTR .
2020-12-24 12:17:59
3633
原创 python练习-prat1
目录01 | 转换01 | 转换1.list转换dictimport numpy as npi = ['a','b']# list 转换为字典def to_dictionary(x): random_list = np.random.randint(0,7,2) dict_x = dict(zip(x,random_list)) return dict_xprint(to_dictionary(i))2.DataFrame转换list# cod.
2020-12-23 15:31:27
329
原创 python爬虫基础入门
目录01 | 爬虫概述02 | requests请求库01 | 爬虫概述爬虫与浏览器区别02 | requests请求库①request的介绍requests 是一个 Python HTTP请求库requests 的作用是 发送请求获取响应数据②requests使用步骤-导入模块-发送get请求, 获取响应-从响应中获取数据#coding:utf-8# 1.导入模块import requests# 2.发送请求,获取响应response = requests.
2020-12-19 14:51:08
237
1
原创 excel—常用函数
目录1.IF函数1.IF函数常规用法是:= IF(判断的条件,符合条件时的结果,不符合条件时的结果)= IF(B2>60,“合格”,“不合格”)
2020-12-17 01:04:38
315
1
原创 sklearn —决策树—基本原理
目录1.决策树原理1.1 运作原理1.2 构建决策树2.分类树DecisionTreeClassifier2.1 重要参数2.2 建一颗分类树1.决策树原理1.1决策树运作原理决策树(Decision Tree)是一种非参数的有监督学习方法,能从有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。tips:①非参数,指不限制数据的结构和类型。有监督学习指的是必须有标签,告诉算法答案。②决策树算法核心在于解决两个问题:如何找出最佳节点和分.
2020-12-14 16:33:56
748
原创 数据可视化—power bi 基础操作汇总
数据来源: https://pan.baidu.com/s/1U_Y7rKfhnSKbLmh4FcUD_Q 提取码: yq5v目录基本功能与视图编辑与查询—修改column案例建立关联性新增column与DAX完成总价运算习题练习1:建立可视化图表 产品销售统计图column拖曳可视化1.基本功能与视图①基础操作界面②获取数据—以打开excel为例③数据文件基本视图可视化形式:柱状图、数据、关联性2.编辑与查询—修改column①编辑与查询—数据处理界面.
2020-12-13 23:16:26
2514
原创 sklearn—随机森林—预测一个人的月收入
数据链接: https://pan.baidu.com/s/1366cxbt-ofzrO8EQofVTjw 提取码: q98b我们现在拥有这样一个表格,里面包含一个成年人的[‘年龄’,‘单位性质’,‘权重’,‘学历’,‘受教育时长’,‘婚姻状况’,‘职业’,‘家庭情况’,‘种族’,‘性别’,‘资产所得’,‘资产损失’,‘周工作时长’,‘原籍’,‘收入’]信息,我们希望通过建模,来建立一个根据个人基本的特征,预测月收入的模型。1.首先读取这个表格import pandas as pdfrom sk.
2020-12-11 08:45:41
1721
原创 面试题—python—pandas
1.运用Series创建一维数组import numpy as npimport pandas as pda = np.arange(0,10)p_pandas = pd.Series(a)print (p_pandas)2.更改一位数组的indeximport numpy as npimport pandas as pda = np.random.rand(5)index = []for i in ('abcde'): index.append(i)p_pandas
2020-12-10 10:26:11
1540
原创 sklearn算法基础
这是一个简单执行Knn算法的操作,通过建模,放入需要预测的数据,来获得预测结果1.首先导入数据集from sklearn.datasets import load_wine #从自带数据及里导入数据wine_dataset = load_wine() #将数据集实例化2.将数据及划分为训练集和测试集#从sklearn.model_selection中导入函数from sklearn.model_selection import train_test_split#将数据集拆分为训练数据集和测试
2020-12-09 15:11:54
432
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅