冷淡的蛋黄酱
码龄4年
关注
提问 私信
  • 博客:88,584
    88,584
    总访问量
  • 59
    原创
  • 1,834,105
    排名
  • 379
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-11-20
博客简介:

weixin_52730784的博客

查看详细资料
个人成就
  • 获得28次点赞
  • 内容获得36次评论
  • 获得332次收藏
  • 代码片获得212次分享
创作历程
  • 50篇
    2021年
  • 10篇
    2020年
成就勋章
TA的专栏
  • sql / excel
    8篇
  • 数据分析案例
    13篇
  • 数据分析逻辑
    12篇
  • 算法
    8篇
  • 笔记
  • 绘图工具
    9篇
  • python练习
    4篇
  • 前端
  • 爬虫
    2篇
兴趣领域 设置
  • 人工智能
    数据分析
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

用户留存分析4个模型

用户留存分析01 | 用户留存1.关于留存2.用户为什么留下来二级目录三级目录01 | 用户留存1.关于留存用户留存率是指新老用户在一定周期里,某些行为重复发生的比例。在界定这一定义之前,要先搞清楚几个问题:分析的用户是新用户还是老用户周期多长,是一周一个月还是半年研究的用户行为是什么2.用户为什么留下来《上瘾》中提供了一个上瘾模型,从触发(Trigger)、行动(Action)、多样酬赏(Variable Rewards)和投入(Investment),四个因素组成一个让用户上瘾的
原创
发布博客 2021.08.17 ·
2765 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

GMV下滑归因分析-基于pest模型

GMV下滑归因分析01 | 课题02 | 分析维度1.客观原因2.主观原因3.外界因素03 | 分析方法1.对比分析2.RFM模型3.场-货-人模型4.pest模型01 | 课题问题:某电商APP上个月的GMV(成交总额)下降了20%,请你分析一下情况和原因。这里我们只从宏观层面简单分析下,因为没有具体的数据支撑,只能结合模型与分析思路做一个大致的头脑风暴。02 | 分析维度1.客观原因ELT工程师数据入库过程中,是否存在数据遗漏问题是否因为网络延迟问题,部分交易数据未入库sql抓取语法
原创
发布博客 2021.08.10 ·
3820 阅读 ·
2 点赞 ·
1 评论 ·
24 收藏

数据分析-描述数据方法

环比分析方法01 | 数据波动1.折线图2.箱线图01 | 数据波动1.折线图通过折线图对比两日的走势,对比同一个维度下的数据,找到突增点进行细节分析。2.箱线图通过箱线图可以看到数据的波动情况(也可以看标准差),通过中位数,上四分位数,下四分位数可以找到数值的极差,以此来衡量不同时间数据的波动情况。...
原创
发布博客 2021.07.14 ·
2874 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习常用模型

常用模型01 | 前言1.选择算法02 | sklearn基础算法1.KNN01 | 前言1.选择算法在选择算法之前,要考虑两个问题。一是使用模型的目的是什么(分类or预测);二是需要使用的数据是什么样的。需要预测变量的值,可以使用监督学习算法,反之使用非监督;如果是分类的问题,可以使用分类模型;如果是求解连续型数值,则应该使用回归模型。02 | sklearn基础算法1.KNN1.定义最近邻 (k-Nearest Neighbors, KNN) 算法是一种分类算法, 应用场景有字符识别、
原创
发布博客 2021.07.12 ·
593 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

BCG矩阵—波士顿矩阵

BCG矩阵01 | BCG矩阵02 | 四分象限03 | 波士顿矩阵绘制04 | 案例分析1.案例一2.案例二01 | BCG矩阵BCG矩阵是一个2 X 2的矩阵,是一个跟企业市场增长率和市场份额有关的数据分析模型。横轴是相对市场占有率(以公司业务的市场占有率除以同业最高的市场占有率而获得),纵轴是市场预期增长,再加上两轴各自的分界而成。在建立图表前,负责人员须分析企业内所有业务或产品的表现。完成后,将各业务或产品的表现标在图表内适当位置,并得出一个表现分布图。02 | 四分象限BCG矩阵是将
原创
发布博客 2021.06.29 ·
11572 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

plotly图库

plotly1.面积图1.面积图# 导入plotly库与离线库import plotly as pyimport plotly.graph_objs as goimport numpy as nppyplt = py.offline.plot# 随机生成np.array,先设置两个随机种子random_state1 = np.random.RandomState(0)random_state2 = np.random.RandomState(2)# 随机生成100个数num1
原创
发布博客 2021.06.28 ·
129 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

统计学基础:基于python

统计学01 | 绪论1.基础概念① 统计总体、总体单位和样本② 总体参数与样本统计量③ 变量2.统计调查-抽样调查① 简单随机抽样② 分层抽样③ 系统抽样④ 整群抽样⑤ 多阶段抽样3.统计实验4.统计误差① 登记性误差② 代表性误差(抽取的样本代表性不够)---------------------------------------------------------------------------02 | 描述统计1.集中趋势统计① 平均值② 众数③ 中位数2.离散程度统计① 极差② 四分位差③ 平均
原创
发布博客 2021.06.28 ·
1136 阅读 ·
0 点赞 ·
1 评论 ·
6 收藏

kaggle常用操作

kaggle01 | data load1.载入数据2.read_csv3.columns解释器01 | data load1.载入数据方法1:Add data - Search对应的数据名称方法2:upload上传数据,上传之前要先填写data名称,否则会卡住2.read_csvimport pandas as pddf = pd.read_csv(r'../input/tesla-stock-data-from-2010-to-2020/TSLA.csv')df[:10]3.c
原创
发布博客 2021.06.25 ·
720 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

小马bi-常用功能集合

小马bi常用功能01 | 门户1.新建门户2.修改 / 删除门户信息02 | 可视化数据来源1.数据获取03 | 可视化1.新建表格2.表格排版3.多维度对比(hue)4.次轴5.削峰处理(数值扁平化)6.数据归一化7.columns筛选8.辅助线01 | 门户1.新建门户小马bi地址:http://xiaoma.oa.com/进入web端主页面之后,会有新建门户的图标,点击后填写信息即可2.修改 / 删除门户信息点击门户界面的基本信息,进入对应修改即可。删除亦同理要注意:删除的门户
原创
发布博客 2021.06.24 ·
1468 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

python正则表达式

正则表达式01 | re.findall( )02.'.'03.[a-z]04.' a[a-z] '05 | ( )括号的作用06 | [Aa]二选一07 | * 匹配一个、多个或没有08 | '|'或01 | re.findall( )import refile = ''poem = open(r'D:\poem.txt')for line in poem: file += lineprint(file)poem.close()# 寻找'wi'字节result = re.fi
原创
发布博客 2021.06.23 ·
417 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

统计学中常用的数据分析方法汇总

统计学分析方法01 | 描述统计1.集中趋势分析2.离中趋势分析3.相关分析4.推论统计02 | 假设检验1.参数检验2.非参数检验03 | 信度分析1.重测信度法2.复本信度法编辑3.折半信度法编辑04 | 列联表分析05 | 相关分析1.单相关2.复相关3.偏相关06 | 方差分析1.单因素方差分析2.多因素有交互方差分析3.多因素无交互方差分析4.协方差分祈07 | 回归分析1.一元线性回归分析2.多元线性回归分析3.Logistic回归分析08 | 聚类分析09 | 判别分析1.与聚类分析区别:2.
原创
发布博客 2021.06.22 ·
4126 阅读 ·
0 点赞 ·
1 评论 ·
16 收藏

pyg2plot绘图

pyg2plot01 | 简介02 | bar图01 | 简介G2是蚂蚁金服开源一个基于图形语法,面向数据分析的统计图表引擎。后来又在其基础上,封装出业务上常用的统计图表库——G2Plot。PyG2Plot是G2Plot 在 Python3 上的封装。pyg2plot与pyecharts类似,结果都是通过render( ) 的方式导出的。这次试用的环境是pycharm,通过下载模块来试用pyg2plot中的Plot功能。参考源代码:https://g2plot.antv.vision/zh/do
原创
发布博客 2021.06.22 ·
767 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

pandas聚合函数

聚合函数01 | 数据集02 | value_counts( )03 | groupby( ) + count ( )03 | groupby( ) + agg( )04 | groupby( ) + apply01 | 数据集1.来源kaggle:https://www.kaggle.com/harlfoxem/housesalesprediction2.简介这是一份kaggle房屋的数据集,包含21个columnsimport pandas as pddf = pd.read_cs
原创
发布博客 2021.06.20 ·
633 阅读 ·
1 点赞 ·
9 评论 ·
4 收藏

目录—sql

sql01 | sql语法1.基础语法02 | sql练习1.牛客网摘选2.45道练习3.sql练习50道03 | 数据清洗1.简单数据清洗01 | sql语法1.基础语法基础语法02 | sql练习1.牛客网摘选牛客网2.45道练习45道练习3.sql练习50道50道题03 | 数据清洗1.简单数据清洗数据清洗...
原创
发布博客 2021.06.15 ·
250 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sql牛客网题(摘选)

sql题摘选01 | join1.inner join(关联四张表)01 | join1.inner join(关联四张表)有一个,部门关系表dept_emp简况如下:有一个部门经理表dept_manager简况如下:有一个薪水表salaries简况如下:现在有一个需求:获取员工其当前的薪水比其manager当前薪水还高的相关信息,第一列给出员工的emp_no,第二列给出其manager的manager_no,第三列给出该员工当前的薪水emp_salary,第四列给该员工对应的m
原创
发布博客 2021.06.15 ·
160 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python词云图

词云图stylecloudstylecloudimport stylecloud# 要先把csv转为txtword = df['signature']word.to_csv('word.txt', sep='\t', index=False)stylecloud.gen_stylecloud(file_path = r'D:\pycharm\data\douyin\word.txt', collocations=False, font_path
原创
发布博客 2021.06.13 ·
278 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

matplotlib常用功能

matplotlibfig,axplt.rcParams[ ]fig,ax# 2,2代表2x2fig,ax = plt.subplots(nrows=2, ncols=2,figsize = (12,5))['df'].value_counts().plot(kind='pie',autopct='%1.2f%%',explode=(0.1,0),ax = ax[0,0],labels = ['男','女'])ax[0,0].set_title('title_name')ax[0,0].set_
原创
发布博客 2021.06.13 ·
523 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目录—数据分析工具

python 目录01 | python常用功能1.pandas02 | 数据可视化1.seaborn2.matplotlib3.pyecharts03 | 其他库1.词云图01 | python常用功能1.pandaspandas02 | 数据可视化1.seabornseaborn2.matplotlibmatplotlib3.pyechartspyecharts03 | 其他库1.词云图styleclound...
原创
发布博客 2021.06.13 ·
662 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

用户画像分析

用户画像分析01 | 用户画像02 | 用户画像内容03 | 数据来源04 | 画像构建01 | 用户画像不同的公司、人群对用户画像的定义存在差异。有的人认为用户画像就是用户的个人信息,有的人认为用户画像是能够反映群体的统计学特性,有的人认为用户画像可以做用户研究。简单来说的话,用户画像可以定义为通过对用户各类特征进行标识,通过标识给用户贴上各类标签,再通过标签把用户分为不同的群体,以便对不同的群体分别进行产品/运营运作。02 | 用户画像内容用户画像大体上可以分为两类:User Persona
原创
发布博客 2021.06.13 ·
1767 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python可视化- Plotlyt图库

plotlyt01 | 关于python图库1.关于matpltlib2.plotlyt02 | plotlyt代码01 | 关于python图库1.关于matpltlibmatplotlib作为一个早期的python可视化图库,现在看来可能稍显得有些陈旧、枯燥。而且matplotlib的语法也有点冗长,调参的时候需要花费一番功夫。为了优化这个问题,github上面也出现了很多开源的图库。本次介绍的plotlyt就是其中之一。2.plotlytGithub 源代码地址:https://git
原创
发布博客 2021.06.11 ·
248 阅读 ·
0 点赞 ·
3 评论 ·
0 收藏
加载更多