559.n叉树的最大深度
给定一个 N 叉树,找到其最大深度。最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。
示例 1:
输入:root = [1,null,3,2,4,null,5,6]
输出:3
示例 2:
输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:5
问题分析:
同111题,利用递归,根节点的高度就是整个二叉树的深度。
class Solution {
public int maxDepth(Node root) {
if (root==null) return 0;
int dep=0;
if (root.children!=null){
for(Node child:root.children){
dep=Math.max(dep,maxDepth(child));
}
}
return dep+1;
}
}
222.完全二叉树的节点个数
给你一棵 完全二叉树 的根节点 root
,求出该树的节点个数。完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h
层,则该层包含1~个节点。
示例 1:
输入:root = [1,2,3,4,5,6]
输出:6
示例 2:
输入:root = []
输出:0
示例 3:
输入:root = [1]
输出:1
问题分析:
递归法:
①遍历左右子树的外侧节点(内侧节点不用遍历,因为是满二叉树,内侧一定有节点), 如果左右两侧的外侧节点数量相等,就是满二叉树,直接利用公式2^h-1,求出满二叉树的节点数量, 在返回给上一层节点,再+1。(一个节点也是满二叉树)
②精简版,按照普通二叉树来看。
方法一:利用满二叉树法
class Solution {
public int countNodes(TreeNode root) {
if (root==null) return 0;
TreeNode left=root.left;
TreeNode right=root.right;
int leftdep=0,rightdep=0;//其实起始值应为1,但是按位操作,原因见下
while(left!=null){
left=left.left;
leftdep++;
}
while (right!=null){
right=right.right;
rightdep++;
}
if (leftdep ==rightdep){
return (2<<leftdep)-1;
//<<:左移: 2 <<= dep 相当于2 * 2^dep,此时多乘了个2,所以一开始初始化为0
}
return countNodes(root.left)+countNodes(root.right)+1;//注意递归
}
}
方法二:精简版
class Solution {
public int countNodes(TreeNode root) {
if (root==null) return 0;
return countNodes(root.left)+countNodes(root.right)+1;
}
}