《数字信号处理》学习07-z变换

目录

1,z变换的收敛域

2,有限长序列

3,左边序列

4,右边序列

5,双边序列 


在之前的学习中,都是用(离散时间)时域分析方法对离散时间系统进行分析,但在信号与系统的分析方法中,还有变换域分析方法:eq?z变换和傅里叶变换法(后面学习离散时间傅里叶变换)。

这篇文章主要是学习eq?z变换,在学习eq?z变换之前,建议先了解连续时间上的傅里叶变换,具体可参考下面的文章👇傅里叶变换、拉普拉斯变换、Z 变换的联系是什么?为什么要进行这些变换? - 知乎 (zhihu.com)

 通过上篇文章的学习,我知道了eq?z变换是离散化的傅里叶变换,对应的定义公式如下:

eq?X%28z%29%3DZ%5Cleft%20%5B%20x%28n%29%20%5Cright%20%5D%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D%20%5Cmid%20_%7Bz%3DAe%5E%7Bj%5Cphi%20%7D%7D                                                                              

z变换作为变换域分析方法中的一种,对序列的处理不再是像之前学习的时域分析方法那样,需要序列 eq?x%28n%29 经过一个系统 eq?T%5Cleft%20%5B%20%5Ccdot%20%5Cright%20%5D,而是直接将序列 eq?x%28n%29 变换成一个函数  eq?X%28z%29 。

 经过变换后的函数 eq?X%28z%29 是原序列 eq?x%28n%29 的象函数,序列 eq?x%28n%29  为 函数  eq?X%28z%29  的原序列。

将由原序列 eq?x%28n%29 变换成其象函数  eq?X%28z%29 的过程就称为 eq?z 正变换(简称:eq?z变换)。

从式  eq?X%28z%29%3DZ%5Cleft%20%5B%20x%28n%29%20%5Cright%20%5D%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D%20%5Cmid%20_%7Bz%3DAe%5E%7Bj%5Cphi%20%7D%7D  中可以看到,eq?z变换是幂级数的形式,如果要让我们的eq?z变换有意义( eq?X%28z%29 存在),那么就需要该幂级数 eq?X%28z%29 收敛,因此,存在eq?z变换的收敛域问题。

接下来我先学习eq?z变换的收敛域。

1,z变换的收敛域

收敛域对应的单词缩写为ROC,全写 region  of  convergence。

如果要z变换(让象函数eq?X%28z%29 )收敛,就需要象函数eq?X%28z%29绝对可和,如下👇:

eq?%5Cleft%20%7C%20X%28z%29%20%5Cright%20%7C%3D%5Cleft%20%7C%20%5Csum_%7B-%5Cinfty%20%7D%5E%7B+%5Cinfty%20%7D%20x%28n%29z%5E%7B-n%7D%5Cright%20%7C%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B+%5Cinfty%20%7D%5Cleft%20%7Cx%28n%29z%5E%7B-n%7D%20%5Cright%20%7C%3DM%3C%5Cinfty

eq?z变换的收敛域就是eq?X%28z%29的收敛域:对于 eq?%5Cforall%20x%28n%29 ,使其 eq?z变换eq?%28X%28z%29%29绝对收敛

所有 z 值的集合就是收敛域(或 |z| 值必须限定在一定范围,这个范围就是收敛域)。 

可以看到, 象函数eq?X%28z%29是由原序列 eq?x%28n%29 和 复变量 eq?z%5E%7B-n%7D组成,如果要让 eq?X%28z%29收敛,就需要原序列 eq?x%28n%29 和复变量 eq?z%5E%7B-n%7D 都绝对收敛。因此可以先从原序列 eq?x%28n%29 入手。

2,有限长序列

当原序列 eq?x%28n%29 绝对收敛时,z的取值就是影响eq?X%28z%29的唯一自变量。 

有限长序列的序列长度确定且序列值有限(没有无穷的序列值,即 eq?x%28n%29%5Cneq%20%5Cinfty)。

下图的序列就是有限长序列 ↓ 

d3fd587340cd4cfb8e4e24fc96b082d8.png

 现在有如下三个序列,判断它们是不是有限长序列:

eq?x_%7B1%7D%28n%29={1,0,8,3,5;n=-2,-1,0,1,2} --------------有限长序列

eq?x_%7B2%7D%28n%29={1,4,8,3,5;n=-2,-1,0,1,2}--------------有限长序列

eq?x_%7B3%7D%28n%29={1,∞,8,3,5;n=-2,-1,0,1,2}-------------x(-1) = ∞,非有限长序列

由于当前讨论的序列是有限长序列,因此原序列 eq?x%28n%29 的起始位置 eq?n_%7B1%7D 和终止位置 eq?n_%7B2%7D 已知(或给出)。

eq?%5Cleft%20%7C%20X%28z%29%20%5Cright%20%7C%3DZ%5Cleft%20%5B%20x%28n%29%20%5Cright%20%5D%3D%5Cleft%20%7C%20%5Csum_%7B-%5Cinfty%20%7D%5E%7B+%5Cinfty%20%7D%20x%28n%29z%5E%7B-n%7D%5Cright%20%7C%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B+%5Cinfty%20%7D%5Cleft%20%7Cx%28n%29z%5E%7B-n%7D%20%5Cright%20%7C%3DM%3C%5Cinfty

有限长序列的z变换定义公式可以修改成如下 👇

 eq?%5Cleft%20%7C%20X%28z%29%20%5Cright%20%7C%3D%5Cleft%20%7C%20Z%5Cleft%20%5B%20x%28n%29%20%5Cright%20%5D%20%5Cright%20%7C%3D%5Cleft%20%7C%20%5Csum_%7Bn_%7B1%7D%20%7D%5E%7Bn_%7B2%7D%20%7Dx%28n%29z%5E%7B-n%7D%20%5Cmid%20_%7Bz%3DAe%5E%7Bj%5Cphi%20%7D%7D%20%5Cright%20%7C

知道有限长序列的z变换之后,就可以得出有限长序列的z变换(X(z))收敛(绝对收敛)区间:

    ∵  eq?%5Cleft%20%7C%20z%5E%7B-n%7D%20%5Cright%20%7C%3D%5Cleft%20%7C%20%5Cfrac%7B1%7D%7Bz%5E%7Bn%7D%7D%20%5Cright%20%7C

又∵  eq?n%5Cin%20%5Cleft%20%5B%20n_%7B1%7D%2Cn_%7B2%7D%20%5Cright%20%5D

    ∴ 只要 z 的值大于0(除数不为零),eq?%5Cleft%20%7C%20%5Cfrac%7B1%7D%7Bz%5E%7Bn%7D%7D%20%5Cright%20%7C  就会随着 n 的增大而衰减,从而令 eq?X%28z%29 收敛。

由于z 的值与n有关,离散时间变量n属于有限区间  eq?%5Cleft%20%5B%20n_%7B1%7D%2Cn_%7B2%7D%20%5Cright%20%5D,因此,z的值也有限,即 eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%3C%5Cinfty

综上,有限长序列的z变换,eq?X%28z%29的收敛域为 eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%280%2C+%5Cinfty%20%29

因为z变量是个复变量,所以z变量所处的平面为z平面。

由于有限长序列 的z变量取值有限,因此,有限长序列的z平面为有限z平面。

有限长序列的收敛域在有限z平面上的表示如下:
0b38a74e49104328ba5b505981aa3ac2.png

 eq?X%28z%29%3DZ%5Cleft%20%5B%20x%28n%29%20%5Cright%20%5D%3D%5Csum_%7Bn_%7B1%7D%20%7D%5E%7Bn_%7B2%7D%20%7Dx%28n%29z%5E%7B-n%7D%20%5Cmid%20_%7Bz%3DAe%5E%7Bj%5Cphi%20%7D%7D ,形如幂级数:eq?%5Csum_%7Bn_%7B1%7D%20%7D%5E%7Bn_%7B2%7D%20%7Dx%28n%29%28z-0%29%5E%7B-n%7D

由于z变量是复变量,在z平面上的收敛域是 以原点0为圆心,除了原点和无穷点外的整个z平面都是eq?X%28z%29的收敛域。

之所以要先讨论有限长序列,是因为之后要学习的三种无限长序列:左边序列,右边序列和双边序列的组成都包含“有限长序列”。

接下来先学习左边序列。

3,左边序列

 左边序列就是序列的非零值基本上都分布在坐标轴的左边,离散时间变量 n 可以向坐标轴的左边无限延伸,即 eq?n%5Cgeq%20-%5Cinfty

左边序列在坐标轴的右边也会有非零序列值,但是数量较少,离散时间变量 n 不能向坐标轴的右边无限延伸,即 eq?n%5Cleq%20M

综上,离散时间变量 n的取值范围:eq?-%5Cinfty%20%3Cn%5Cleq%20M

因此,左边序列的z变换如下:

eq?X%28z%29%3D%5Csum_%7Bn%3D-%5Cinfty%20%7D%5E%7BM%7Dx%28n%29z%5E%7B-n%7D%3D%5Csum_%7Bn%3D-%5Cinfty%20%7D%5E%7B0%7Dx%28n%29z%5E%7B-n%7D+%5Csum_%7Bn%3D1%7D%5E%7BM%7Dx%28n%29z%5E%7B-n%7D

观察上式,可以看到:

  • eq?X%28z%29 的左项  eq?%5Csum_%7Bn%3D-%5Cinfty%20%7D%5E%7B0%7Dx%28n%29z%5E%7B-n%7D%3D%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7Bn%7D 形如幂级数的特殊形式:eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Da_%7Bn%7Dx%5E%7Bn%7D

    (幂级数的一般形式:eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Da_%7Bn%7D%28x-x_%7B0%7D%29%5E%7Bn%7D,当eq?x%3Dx_%7B0%7D时,就是幂级数的特殊形式。)

    对于幂级数的特殊形式eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Da_%7Bn%7Dx%5E%7Bn%7D,可以使用阿贝尔定理来判断该幂级数的敛散性。

    阿贝尔定理:如果幂级数 eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Da_%7Bn%7Dx%5E%7Bn%7D,在eq?x%3Dx_%7B0%7D 处,幂级数收敛,那么

    适合不等式  eq?%5Cleft%20%7C%20x%20%5Cright%20%7C%3C%5Cleft%20%7C%20x_%7B0%7D%20%5Cright%20%7C  的一切 eq?x 使得幂级数 eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Da_%7Bn%7Dx%5E%7Bn%7D绝对收敛。

    因此根据阿贝尔定理,如果要让eq?X%28z%29 收敛, eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7Bn%7D 也必须收敛,所以一定存在一个 eq?z_%7B0%7D 让适合不等式  eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%3C%5Cleft%20%7C%20z_%7B0%7D%20%5Cright%20%7C  的一切 eq?z 使得幂级数 eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7Bn%7D绝对收敛。

    eq?z_%7B0%7D 是一个复变量,对应的模 eq?%5Cleft%20%7C%20z_%7B0%7D%20%5Cright%20%7C 是一个正数(复变量的模表示该复变量的长度,长度只能>=0,在实际生活中不会有长度为负数的情况),因此,eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7Bn%7D的收敛域如下图👇
    df298c33577a4043845b08758582d3cb.png
    可以得到eq?%5Csum_%7Bn%3D0%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7Bn%7D的收敛域(绝对收敛)为:eq?0%5Cleq%20%5Cleft%20%7C%20z%20%5Cright%20%7C%3Cz_%7B0%7Deq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%5Cleft%20%5B%200%2Cz_%7B0%7D%5Cright%20%29
    即,该幂级数的收敛域在以原点为中心,eq?%5Cleft%20%7C%20z_%7B0%7D%20%5Cright%20%7C 为半径的圆内(包含原点,因为n的取值是正整数,所以幂函数 eq?z%5E%7Bn%7D 的底数 z 不作为除数,可以为0)。
  • 右项的幂级数 eq?%5Csum_%7Bn%3D1%7D%5E%7BM%7Dx%28n%29z%5E%7B-n%7D 是个有限长序列,刚刚学习了有限长序列的概念,知道了有限长序列的收敛域为 eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%280%2C+%5Cinfty%20%29 ,由于eq?M%5Cgeq%20n%3D1%3E0,该序列的非零序列值全部位于坐标轴的右边,因此该有限长序列也称为右边有限长序列。由于右边有限长序列的离散变量 n是向右边延伸(有界,可以等于∞),因此右边有限长序列的收敛域为: eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%5Cleft%20%280%2C+%5Cinfty%5Cright%20%5D
    对于左边序列来说,位于坐标轴右边的序列数量有限且较少,对序列整体上的影响也较小,之所以要讨论有限长序列的收敛域,是因为做题的时候能够较快的写成所求序列的z变换中有限长序列的收敛域,等学习完了双边序列之后,再上题。
  • eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%5Cleft%20%5B%200%2Cz_%7B0%7D%5Cright%20%29和 eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%5Cleft%20%280%2C+%5Cinfty%5Cright%20%5D取交集,得到左边序列的收敛域:eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%5Cleft%20%5B%200%2Cz_%7B0%7D%5Cright%20%29

4,右边序列

右边序列的收敛域分析过程和左边序列类似,在这里我就简短点。

右边序列的离散时间变量n可以向右无限延伸,其eq?z变换:eq?X%28z%29%3DZ%5Cleft%20%5B%20x%28n%29%20%5Cright%20%5D%3D%5Csum_%7Bn%3Dm%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D

当右边序列在坐标轴的左边还有非零序列值时,上述z变换可以修改成如下形式:

eq?%5Csum_%7Bn%3Dm%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D%3D%5Csum_%7Bn%3Dm%7D%5E%7B0%7Dx%28n%29z%5E%7B-n%7D+%5Csum_%7Bn%3D1%7D%5E%7B+%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D

 其中:

  • eq?%5Csum_%7Bn%3Dm%7D%5E%7B0%7Dx%28n%29z%5E%7B-n%7D是左边有限长序列(n<0),收敛域包括0,即 eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%5Cleft%20%5B0%2C&plus;%5Cinfty%5Cright%20%29
  • eq?%5Csum_%7Bn%3D1%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D是幂级数的特殊形式 ,利用阿贝尔定理可知,存在一个eq?z_%7B0%7D%5E%7B-1%7D,令适合不等式

    eq?%5Cleft%20%7C%20z%5E%7B-1%7D%20%5Cright%20%7C%3C%5Cleft%20%7C%20z_%7B0%7D%5E%7B-1%7D%20%5Cright%20%7C的一切eq?z使得幂级数eq?%5Csum_%7Bn%3D1%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D收敛。

    eq?%5Cleft%20%7C%20z%5E%7B-1%7D%20%5Cright%20%7C%3C%5Cleft%20%7C%20z_%7B0%7D%5E%7B-1%7D%20%5Cright%20%7C可以修改成eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%3E%20%5Cleft%20%7C%20z_%7B0%7D%20%5Cright%20%7C。(例如 eq?%5Cfrac%7B1%7D%7B3%7D%20%3C%20%5Cfrac%7B1%7D%7B2%7D,而  eq?3%3E%202),复变量z的终止位置就是无穷点,即 eq?%5Cleft%20%7C%20z_%7B0%7D%20%5Cright%20%7C%3C%20%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cleq&plus;%20%5Cinfty,因此,右边序列的z变换收敛域如下图所示:
    49d3b3adbf764dfcaa5f2d42af5d97ab.png

 学习了两个单边序列:左边序列和右边序列之后,接下来学习双边序列。

5,双边序列 

双边序列顾名思义就是离散时间变量 eq?n 可以同时向坐标轴的左右两边无限延伸,使得坐标轴的左右两边都有无限个非零序列值。双边序列x(n)的z变换 :eq?X%28z%29%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D

通过上面句子的描述,可以知道双边序列是由左边序列和右边序列组成。对应的z变换修改如下👇

eq?X%28z%29%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D%3D%5Csum_%7B-%5Cinfty%20%7D%5E%7B-1%7Dx%28n%29z%5E%7B-n%7D&plus;%5Csum_%7B0%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D

其中:

  •  eq?%5Csum_%7B-%5Cinfty%20%7D%5E%7B-1%7Dx%28n%29z%5E%7B-n%7D左边序列,收敛域:eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%5Cleft%20%5B%200%2Cz_%7B0%7D%20%5Cright%29
  • eq?%5Csum_%7B0%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D 右边序列,收敛域:eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%5Cleft%20%28z_%7B0%7D%20%2C&plus;%5Cinfty%20%5Cright%5D
  • 双边序列的收敛域就是,将左边序列和右边序列的收敛域取交集。
  • 因为左边序列和右边序列都有 eq?z_%7B0%7D,为了区分这两个收敛半径可将左边序列的 eq?z_%7B0%7D 替换成 eq?z_%7B&plus;%7D
    右边序列的  eq?z_%7B0%7D 替换成 eq?z_%7B-%7D,所以,左边序列的收敛域改为:eq?%5Cleft%20%7Cz%20%5Cright%20%7C%5Cin%20%5Cleft%20%5B%200%2Cz_%7B&plus;%7D%20%5Cright%29,右边序列的收敛域改为:eq?%5Cleft%20%7Cz%20%5Cright%20%7C%5Cin%20%5Cleft%20%28z_%7B-%7D%20%2C&plus;%5Cinfty%20%5Cright%5D
  • 因此,双边序列的收敛域为:eq?%5Cleft%20%7Cz%20%5Cright%20%7C%5Cin%20%5Cleft%20%28%20z_%7B-%7D%2Cz_%7B&plus;%7D%20%5Cright%29,在复平面上的表示如下👇
    fae4a39edb33451fbd5a3a48380943a1.png

现在常用的四种序列已经学习完, 接下来就是将理论付诸于实践,做一道题,检查自己是否真的掌握序列相关的这些知识。如下题,求序列的z变换和相应的收敛域👇

d49cef0b9306476aba9849649de27b4e.png

思路:首先写出序列的z变换X(z),接着将无穷区间替换成题目给出的定义域,之后带入离散时间变量n对应的序列值x(n)得出结果,最后不要忘记加上收敛域。

解:

 eq?X%28z%29

=eq?Z%5Bx%28n%29%5D

=eq?%5Csum_%7B-%5Cinfty%20%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D

=eq?%5Csum_%7B-%5Cinfty%20%7D%5E%7B-1%7Dx%28n%29z%5E%7B-n%7D&plus;%5Csum_%7B0%7D%5E%7B2%20%7Dx%28n%29z%5E%7B-n%7D&plus;%5Csum_%7B3%20%7D%5E%7B&plus;%5Cinfty%20%7Dx%28n%29z%5E%7B-n%7D  //根据题目,有三个区间的序列

=eq?0&plus;1%5Ctimes%20z%5E%7B-0%7D&plus;1%5Ctimes%20z%5E%7B-1%7D&plus;1%5Ctimes%20z%5E%7B-2%7D&plus;0

=eq?1&plus;z%5E%7B-1%7D&plus;z%5E%7B-2%7D

=eq?1&plus;%5Cfrac%7Bz&plus;1%7D%7Bz%5E%7B2%7D%7D 

∵ eq?%5Cfrac%7Bz&plus;1%7D%7Bz%5E%7B2%7D%7D%3D%5Cfrac%7B%5Cfrac%7B1%7D%7Bz%7D&plus;%5Cfrac%7B1%7D%7Bz%5E%7B2%7D%7D%7D%7B1%7D

又∵ 要令eq?%5Cfrac%7B%5Cfrac%7B1%7D%7Bz%7D&plus;%5Cfrac%7B1%7D%7Bz%5E%7B2%7D%7D%7D%7B1%7D收敛

∴  eq?lim_%7Bz%5Crightarrow%20&plus;%5Cinfty%20%7D%28%5Cfrac%7B1%7D%7Bz%7D&plus;%5Cfrac%7B1%7D%7Bz%5E%7B2%7D%7D%29%3D0&plus;0%3D0  // 通过极限的方法:常数除以无穷大,结果为0

由于除数不能为0,且z的取值为正数。

因此, eq?X%28z%29 的收敛域为:eq?%5Cleft%20%7C%20z%20%5Cright%20%7C%5Cin%20%5Cleft%20%28%200%2C&plus;%5Cinfty%20%5Cright%20%5D                                   

如果遇到由多个函数合成的序列,那么求其z变换的过程也会复杂点(虽然可以求出来,但花费的时间会较长), 因此知道几种常见序列的z变换结果及其收敛域,可以极大的节省时间。如下表👇

有问题请在评论区留言或者是私信我,回复时间不超过一天。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值