1. 极限的性质
-
有界性:
- 数列: 如果数列
{x_n}
收敛,那么数列{x_n}
一定有界。 - 函数: 如果
lim (x→x₀) f(x)
存在,则f(x)
在x₀
的某个去心邻域内有界(局部有界)。 注意这里强调的是 去心 邻域, 即不包含x₀
本身。
- 数列: 如果数列
-
保号性(重点!)注意上下两式 带不带等号 有讲究! :
- 数列保极限: 如果存在
N > 0
,当n > N
时,x_n ≥ 0
(或x_n ≤ 0
),那么lim (n→∞) x_n = A ≥ 0
(或A ≤ 0
)。 - 极限保数列: 如果
lim (n→∞) x_n = A
且A > 0
(或A < 0
),那么存在N > 0
,当n > N
时,x_n > 0
(或x_n < 0
)。 - 函数保极限和极限保函数性质与数列类似。
- 数列保极限: 如果存在
2. 极限存在准则
- ① 夹逼定理: 【适用于求 n 项和的极限】
- ② 单调有界准则:
3. 无穷小量
-
概念: 当
x→x₀
或x→∞
时,极限为 0 的函数或数列称为无穷小量。 -
比较(重点!): 设
α(x)→0, β(x)→0
- 高阶:
lim [α(x) / β(x)] = 0
,记作α(x) = o(β(x))
。 - 低阶:
lim [α(x) / β(x)] = ∞
。 - 同阶:
lim [α(x) / β(x)] = C ≠ 0
。 - 等价:
lim [α(x) / β(x)] = 1
,记作α(x) ~ β(x)
。 - 引入"阶"的概念: 若
lim α(x) / [β(x)]^k = C ≠ 0
, 则称α(x)
是β(x)
的k阶无穷小.
- 高阶:
-
常用等价无穷小(x→0 时):
sin x ~ x
tan x ~ x
arcsin x ~ x
arctan x ~ x
ln(1+x) ~ x
e^x - 1 ~ x
1 - cos x ~ (1/2)x²
(1+x)^α - 1 ~ αx
- 以及这些公式的变形
-
性质:
- 有限个无穷小量的和、积仍是无穷小量。
- 无穷小量与有界量的乘积仍是无穷小量。
-
无穷小替换: 在求极限的乘除运算中,可以用等价无穷小量替换。但加减运算中一般不能替换。
4. 无穷大量
-
概念: 绝对值无限增大的变量(趋向于 ∞)。
-
性质:
- 两个无穷大量的积仍是无穷大量。
- 无穷大量与有界变量的和仍是无穷大量。
-
与无界变量的关系: 无穷大量一定是无界变量,但无界变量不一定是无穷大量。
- 例子: n为奇数时,x_n = n; n为偶数时, x_n = 0。
-
与无穷小量的关系: 在同一极限过程中,如果
f(x)
是无穷大量,则1/f(x)
是无穷小量;反之,如果f(x)
是非零的无穷小量,则1/f(x)
是无穷大量。
5. 常用的一些无穷大量的比较
- 函数 (x→+∞):
ln^α x << x^β << a^x
(其中α > 0, β > 0, a > 1
) - 数列 (n→∞):
ln^α n << n^β << a^n << n! << n^n
(其中α > 0, β > 0, a > 1
)
6. 极限计算
- 基本极限:
lim (x→0) sin(x)/x = 1
lim (x→∞) (1 + 1/x)^x = e
- 利用等价无穷小替换
- 有理运算法则 (分子分母分别求极限)
- 洛必达法则