跟着李沐老师学习深度学习(四)

多层感知机

感知机

  • 给定输入x,权重w,和偏移b,感知机输出:
    在这里插入图片描述
    本质是一个二分类问题。(离散的类)

    • vs.线性回归输出的是实数
    • vs.softmax回归输出的是概率
  • 训练感知机(60年代):
    在这里插入图片描述

    • 等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
      在这里插入图片描述
      max() 对应if语句;如果分类正确,则y > 0,所以loss = 0 — >不作更新。
  • 收敛定理

    • 假设数据在一个半径 r 内的区域里;假设存在一个余量为 ρ 的分截面,使得所有的分类都是正确的。
      在这里插入图片描述
      在以上情况下,可以知道感知机确实能找到一个最优解,并保证只会在 (r^2 + 1)/ ρ^2 步后收敛。
  • XOR问题(Minsky & Papert, 1969)

    • 感知机不能拟合XOR函数,只能产生线性分割面。(不管怎么切,都不能分隔开)

在这里插入图片描述 之后,找到了该问题的解决方法——多层感知机

  • 总结
    • 感知机是一个二分类模型,是最早的AI模型之一
    • 它的求解算法等价于使用批量大小为1的梯度下降
    • 它不能拟合 XOR 函数(第一次 AI 寒冬)

多层感知机

  • 学习XOR
    想要完全分类,单是线性分类是不行的,解决步骤:

    • 学习两种感知机,如下图中蓝色和黄色的线
    • 然后使用两种结果进行相乘,得到的结果我们就可以进行分类(如下表)
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      一次做不了,就先学一个简单的模型,然后在学一个,共同解决一个复杂问题 —— 即:多层感知机解决的问题。
  • 单隐藏层
    简单的讲,就是下面这个图:(隐藏层大小是超参数)
    在这里插入图片描述

  • 单隐藏层——单分类
    其中,m:是隐藏层的神经元个数(h1 ~ h5);n:是样本的特征数(x1 ~ x4)
    在这里插入图片描述
    其中,σ是按元素的激活函数

  • 为什么需要非线性激活函数?
    常犯错误:没有加激活函数,即:当我们将n个全连接层放在一起,发现还是一个最简单的线性模型。

  • 激活函数:

    • Sigmoid()激活函数:对于一个定义域在R中的输入,将输入变换为区间(0, 1)上的输出
      在这里插入图片描述
    • Tanh激活函数: 将输入投影到(-1,1)
      在这里插入图片描述
    • RelU激活函数(rectified linear unit)
      在这里插入图片描述
      该函数比较常用、简单。
  • 多类分类
    在这里插入图片描述
    与单分类的区别:输出层的W2是一个m * k的矩阵,b2是一个长为k的向量。
    在这里插入图片描述

  • 多隐藏层
    在这里插入图片描述
    超参数:

    • 隐藏层数
    • 每层隐藏层的大小
      相较于简单的线性softmax,多层感知机的灵魂在于多出来的中间隐藏层的激活函数。

总结

  • 多层感知机使用隐藏层激活函数来得到非线性模型
  • 常用激活函数是Sigmoid,Tanh,ReLU;
  • 使用 Softmax 来处理多类分类;
  • 超参数为隐藏层数,和各个隐藏层大小。

代码实现 – 多层感知机的从零开始实现

  1. 数据准备
    导入必要的库:导入torch、nn(PyTorch 的神经网络模块)以及d2l工具库,方便后续使用其提供的数据加载和训练函数。
    加载数据集:使用d2l.load_data_fashion_mnist函数加载 Fashion - MNIST 数据集,并设置批量大小batch_size为 256,得到训练数据迭代器train_iter和测试数据迭代器test_iter

    import torch
    from torch import nn
    from d2l import torch as d2l
    
    batch_size = 256
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    
  2. 确定模型参数
    定义模型维度:确定输入层、隐藏层和输出层的神经元数量。这里输入层维度num_inputs为 784(因为 Fashion - MNIST 图像展平后是 784 维向量),输出层维度num_outputs为 10(对应 10 个类别),隐藏层维度num_hiddens为 256。
    初始化模型参数:对模型的权重矩阵W1、W2和偏置向量b1、b2进行初始化,并将它们包装为nn.Parameter类型,以便 PyTorch 能自动跟踪其梯度。W1和W2使用随机正态分布初始化,b1和b2初始化为零向量。

    num_inputs, num_outputs, num_hiddens = 784, 10, 256
    
    W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True))
    b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
    
    W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True))
    b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
    
    params = [W1, b1, W2, b2]
    
  3. 定义激活函数
    实现 ReLU(Rectified Linear Unit)激活函数,它是一种常用的非线性激活函数,可以为模型引入非线性特性。ReLU 函数将输入中小于零的值置为零,大于零的值保持不变。

    def relu(X):
        a = torch.zeros_like(X)
        return torch.max(X, a)
    
  4. 构建模型
    定义多层感知机模型的前向传播过程。首先将输入数据X展平为二维张量,然后通过第一个线性变换(X @ W1 + b1)得到隐藏层的输入,再经过 ReLU 激活函数得到隐藏层的输出H,最后将隐藏层的输出通过第二个线性变换(H @ W2 + b2)得到模型的最终输出。

    def net(X):
        X = X.reshape((-1, num_inputs))
        H = relu(X @ W1 + b1)
        return (H @ W2 + b2)
    
  5. 定义损失函数
    选择交叉熵损失函数nn.CrossEntropyLoss,它适用于多分类问题,能够衡量模型预测结果与真实标签之间的差异。

    loss = nn.CrossEntropyLoss()
    
  6. 选择优化器
    使用随机梯度下降(SGD)优化器torch.optim.SGD,并设置学习率lr为 0.01,用于在训练过程中更新模型的参数。

    num_epochs, lr = 10, 0.01
    updater = torch.optim.SGD(params, lr=lr)
    
  7. 模型训练
    设置训练的轮数num_epochs为 10,然后调用d2l.train_ch3函数进行模型训练。该函数会在每个训练轮次中,使用训练数据迭代器train_iter进行前向传播、损失计算、反向传播和参数更新,并在每个轮次结束后使用测试数据迭代器test_iter评估模型的性能。

    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
    

最终结果:
在这里插入图片描述

代码实现 – 多层感知机的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256), 
                    nn.ReLU(), 
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)
        
net.apply(init_weights);

# 训练

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

最终结果:在这里插入图片描述
与之前的训练过程并没有本质区别;从代码角度,变化的东西并不多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值