多层感知机
感知机
-
给定输入x,权重w,和偏移b,感知机输出:
本质是一个二分类问题。(离散的类)- vs.线性回归输出的是实数
- vs.softmax回归输出的是概率
-
训练感知机(60年代):
- 等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
max() 对应if语句;如果分类正确,则y > 0,所以loss = 0 — >不作更新。
- 等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
-
收敛定理
- 假设数据在一个半径 r 内的区域里;假设存在一个余量为 ρ 的分截面,使得所有的分类都是正确的。
在以上情况下,可以知道感知机确实能找到一个最优解,并保证只会在 (r^2 + 1)/ ρ^2 步后收敛。
- 假设数据在一个半径 r 内的区域里;假设存在一个余量为 ρ 的分截面,使得所有的分类都是正确的。
-
XOR问题(Minsky & Papert, 1969)
- 感知机不能拟合XOR函数,只能产生线性分割面。(不管怎么切,都不能分隔开)
之后,找到了该问题的解决方法——多层感知机
- 总结
- 感知机是一个二分类模型,是最早的AI模型之一
- 它的求解算法等价于使用批量大小为1的梯度下降
- 它不能拟合 XOR 函数(第一次 AI 寒冬)
多层感知机
-
学习XOR
想要完全分类,单是线性分类是不行的,解决步骤:- 学习两种感知机,如下图中蓝色和黄色的线
- 然后使用两种结果进行相乘,得到的结果我们就可以进行分类(如下表)
一次做不了,就先学一个简单的模型,然后在学一个,共同解决一个复杂问题 —— 即:多层感知机解决的问题。
-
单隐藏层
简单的讲,就是下面这个图:(隐藏层大小是超参数)
-
单隐藏层——单分类
其中,m:是隐藏层的神经元个数(h1 ~ h5);n:是样本的特征数(x1 ~ x4)
其中,σ是按元素的激活函数 -
为什么需要非线性激活函数?
常犯错误:没有加激活函数,即:当我们将n个全连接层放在一起,发现还是一个最简单的线性模型。 -
激活函数:
- Sigmoid()激活函数:对于一个定义域在R中的输入,将输入变换为区间(0, 1)上的输出
- Tanh激活函数: 将输入投影到(-1,1)
- RelU激活函数(rectified linear unit)
该函数比较常用、简单。
- Sigmoid()激活函数:对于一个定义域在R中的输入,将输入变换为区间(0, 1)上的输出
-
多类分类
与单分类的区别:输出层的W2是一个m * k的矩阵,b2是一个长为k的向量。
-
多隐藏层
超参数:- 隐藏层数
- 每层隐藏层的大小
相较于简单的线性softmax,多层感知机的灵魂在于多出来的中间隐藏层的激活函数。
总结
- 多层感知机使用隐藏层和激活函数来得到非线性模型;
- 常用激活函数是Sigmoid,Tanh,ReLU;
- 使用 Softmax 来处理多类分类;
- 超参数为隐藏层数,和各个隐藏层大小。
代码实现 – 多层感知机的从零开始实现
-
数据准备
导入必要的库:导入torch、nn(PyTorch 的神经网络模块)以及d2l工具库,方便后续使用其提供的数据加载和训练函数。
加载数据集:使用d2l.load_data_fashion_mnist
函数加载 Fashion - MNIST 数据集,并设置批量大小batch_size
为 256,得到训练数据迭代器train_iter
和测试数据迭代器test_iter
。import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
-
确定模型参数
定义模型维度:确定输入层、隐藏层和输出层的神经元数量。这里输入层维度num_inputs
为 784(因为 Fashion - MNIST 图像展平后是 784 维向量),输出层维度num_outputs
为 10(对应 10 个类别),隐藏层维度num_hiddens
为 256。
初始化模型参数:对模型的权重矩阵W1、W2和偏置向量b1、b2进行初始化,并将它们包装为nn.Parameter
类型,以便 PyTorch 能自动跟踪其梯度。W1和W2使用随机正态分布初始化,b1和b2初始化为零向量。num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True)) b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True)) W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True)) b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True)) params = [W1, b1, W2, b2]
-
定义激活函数
实现 ReLU(Rectified Linear Unit)激活函数,它是一种常用的非线性激活函数,可以为模型引入非线性特性。ReLU 函数将输入中小于零的值置为零,大于零的值保持不变。def relu(X): a = torch.zeros_like(X) return torch.max(X, a)
-
构建模型
定义多层感知机模型的前向传播过程。首先将输入数据X展平为二维张量,然后通过第一个线性变换(X @ W1 + b1
)得到隐藏层的输入,再经过 ReLU 激活函数得到隐藏层的输出H,最后将隐藏层的输出通过第二个线性变换(H @ W2 + b2
)得到模型的最终输出。def net(X): X = X.reshape((-1, num_inputs)) H = relu(X @ W1 + b1) return (H @ W2 + b2)
-
定义损失函数
选择交叉熵损失函数nn.CrossEntropyLoss
,它适用于多分类问题,能够衡量模型预测结果与真实标签之间的差异。loss = nn.CrossEntropyLoss()
-
选择优化器
使用随机梯度下降(SGD)优化器torch.optim.SGD
,并设置学习率lr为 0.01,用于在训练过程中更新模型的参数。num_epochs, lr = 10, 0.01 updater = torch.optim.SGD(params, lr=lr)
-
模型训练
设置训练的轮数num_epochs
为 10,然后调用d2l.train_ch3
函数进行模型训练。该函数会在每个训练轮次中,使用训练数据迭代器train_iter
进行前向传播、损失计算、反向传播和参数更新,并在每个轮次结束后使用测试数据迭代器test_iter评估模型的性能。d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
最终结果:
代码实现 – 多层感知机的简洁实现
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
# 训练
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
最终结果:
与之前的训练过程并没有本质区别;从代码角度,变化的东西并不多。