目录
差分分析
假设a1,a2,a3,... ,an为前缀和数组
构造b1,b2,b3,...,bn差分数组
使得b[i]=a[i]-a[i-1]
即an=b1+b2+b3+ ··· bn
相当于求前缀和的逆过程
作用:用O(1)的时间给原数组的某一段区间里的每个数都加上一个常数
如让一个数组的区间[l,r]所有的数都加上常数c,则只需要让 b[l]=b[l]+c,b[r+1]=b[r+1]-c,那么它的前缀和数组a[l]~a[r]每个数都会加上c,而a[r+1]及之后的数并不会发生改变。那么我们要的答案便是通过差分数组b求出的前缀和!
那么如何构造这个差分数组呢?其实不需要特意构造,逐步插入就好了!即对[i,i](i=1,2,...,n)区间都进行b[i]=b[i]+c,b[i+1]=b[i+1]-c操作
void insert(int l,int r,int c)
{
b[l]+=c;
b[r+1]-=c;
}for(int i=1;i<=n;i++) insert(i,i,a[i]);
小tips:两个数组并没有实时联动起来,对某一个数组进行操作后需要手动操作同步
例题
题目详情:

输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例 :
3 4 5 3 4 2
一些解释:
b[N]:是a[N]的差分数组,后面的b[i]+=b[i-1]相当于在求b的前缀和,即更新后的a[N]
a[N]:是b数组的前缀和,也是本题输入的原数组
其实在本题中,完全没有必要开a数组,只是为了更加方便理解
比较难理解的地方:对b数组的操作!!在求差分时,我们新开一个数组b使得b[i]=a[i]-a[i-1];a数组用来记录我们输入的数,以便构造差分数组,使得a[n]=b[1]+b[2]+···+b[n],
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) insert(i, i, a[i]);
while (m -- )
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
for (int i = 1; i <= n; i ++ ) b[i] += b[i - 1];
for (int i = 1; i <= n; i ++ ) printf("%d ", b[i]);
return 0;
}

https://blog.csdn.net/weixin_53461714/article/details/124736427?spm=1001.2014.3001.5501
302

被折叠的 条评论
为什么被折叠?



