目录

acwing - 862. 单链表
题目详情:
实现一个单链表,链表初始为空,支持三种操作:
向链表头插入一个数;
删除第 k 个插入的数后面的数;
在第 k 个插入的数后插入一个数。
现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
H x,表示向链表头插入一个数 x。
D k,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。
I k x,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。输出格式
共一行,将整个链表从头到尾输出。
数据范围
1≤M≤100000 所有操作保证合法。
输入样例:
10 H 9 I 1 1 D 1 D 0 H 6 I 3 6 I 4 5 I 4 5 I 3 4 D 6输出样例:
6 4 6 5
分析:
节点数量多,为了程序速度更快,我们可以用数组模拟链表


删除操作:删除第k个插入的数相当于删除节点下标为k - 1的后一个节点,因为第一个插入的数下标为0,第二个插入的数下标为1...则第k个插入的数下标为 k - 1;
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N = 100010;
//此题的链表是头插法,且头结点代表一个真正的节点,有实际值
//head 表示头结点的下标
//e[i] 表示节点i的值
//ne[i] 表示节点i的next指针是多少
//idx 相当于一个指针,指向现在用到的点的位置
int head,e[N],ne[N],idx;
//初始化
void init()
{
head = -1;
idx = 0;
}
//将新的点插到头结点的位置
void add_head(int x)
{
e[idx] = x;
ne[idx] = head;
head = idx;
idx ++;
}
//将新的点插到下标是k的这个点的后面
void add_node(int k, int x)
{
e[idx] = x;
ne[idx] = ne[k];
ne[k] = idx;
idx ++;
}
//删除
void del_node(int k)
{
ne[k] = ne[ne[k]]; //k不一定是连续的数
}
int main()
{
int m;
cin>>m;
init();
while(m --)
{
char op;
int x,k;
cin>>op;
if(op == 'H')
{
cin>>x;
add_head(x);
}
else if(op == 'D')
{
cin>>k;
if(k == 0)
{
head = ne[head];
}
else del_node(k - 1);
}
else if(op == 'I')
{
cin>>k>>x;
add_node(k - 1,x);
}
}
for(int i = head; i != -1; i = ne[i])
{
cout<<e[i]<<" ";
}
cout<<endl;
return 0;
}
acwing - 827. 双链表
题目详情:
实现一个双链表,双链表初始为空,支持 5 种操作:
在最左侧插入一个数;
在最右侧插入一个数;
将第 k 个插入的数删除;
在第 k 个插入的数左侧插入一个数;
在第 k 个插入的数右侧插入一个数
现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
L x,表示在链表的最左端插入数 x。
R x,表示在链表的最右端插入数 x。
D k,表示将第 k 个插入的数删除。
IL k x,表示在第 k 个插入的数左侧插入一个数。
IR k x,表示在第 k 个插入的数右侧插入一个数。输出格式
共一行,将整个链表从左到右输出。
数据范围
1≤M≤100000 所有操作保证合法。
输入样例:
10 R 7 D 1 L 3 IL 2 10 D 3 IL 2 7 L 8 R 9 IL 4 7 IR 2 2输出样例:
8 7 7 3 2 9
分析:
初始化
void init()右插入
void insert(int k, int x)![]()
注意:
调用函数:
insert(k + 1, x);第k个插入的数,相当于下标为k + 1的节点,因为第一个插入的数下标为2,第二个插入的数下标为3...以此类推,第k个插入的数下标为k + 1,所以图中节点k和第k个插入的数不相同,k的含义也不同。(0,1下标为虚拟头结点和尾结点,为了方便统一操作而设的,)
第三步和第四步顺序不能反,如果第四步在第三步前面,会导致找不到第k个插入的数后面的节点
左插入
可以调用右插入这个函数:在k点的左侧插入一个数,相当于在l[k]这个点的右侧插入一个数
调用函数:
insert(l[k + 1], x);左右端点插入
左端点即头结点下标为0,右端点即尾结点右侧节点的下标为l[1]
删除
void remove(int k)
代码:
#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
const int N = 100010;
int e[N],l[N],r[N],idx;
//初始化
void init()
{
//0表示左端点,1表示右端点
r[0] = 1, l[1] = 0;
idx = 2;
}
//右插入
//在下标是k的点的右边,插入x
void insert(int k,int x)
{
e[idx] = x;
r[idx] = r[k];
l[idx] = k;
l[r[k]] = idx;
r[k] = idx;
idx ++;
}
//删除第k个点
void remove(int k)
{
r[l[k]] = r[k];
l[r[k]] = l[k];
}
int main()
{
int m;
init();
cin>>m;
while(m--)
{
string op;
int k,x;
cin>>op;
if(op == "L")
{
cin>>x;
insert(0,x);
}
else if(op == "IL")
{
cin>>k>>x;
insert(l[k + 1],x);
}
else if(op == "R")
{
cin>>x;
insert(l[1],x);
}
else if(op == "IR")
{
cin>>k>>x;
insert(k + 1,x);
}
else
{
cin>>k;
remove(k + 1);
}
}
for(int i = r[0]; r[i] != 0; i = r[i])
{
cout<<e[i]<<" ";
}
return 0;
}



849

被折叠的 条评论
为什么被折叠?



