数组模拟单链表与双链表

目录

acwing - 862. 单链表

acwing - 827. 双链表


acwing - 862. 单链表

题目传送门

题目详情:

实现一个单链表,链表初始为空,支持三种操作:

  1. 向链表头插入一个数;

  2. 删除第 k 个插入的数后面的数;

  3. 在第 k 个插入的数后插入一个数。

现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。

注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. H x,表示向链表头插入一个数 x。

  2. D k,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。

  3. I k x,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。

输出格式

共一行,将整个链表从头到尾输出。

数据范围

1≤M≤100000 所有操作保证合法。

输入样例:

10
H 9
I 1 1
D 1
D 0
H 6
I 3 6
I 4 5
I 4 5
I 3 4
D 6

输出样例:

6 4 6 5

分析:

节点数量多,为了程序速度更快,我们可以用数组模拟链表

        

 

删除操作:删除第k个插入的数相当于删除节点下标为k - 1的后一个节点,因为第一个插入的数下标为0,第二个插入的数下标为1...则第k个插入的数下标为 k - 1;

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
​
const int N = 100010;
​
//此题的链表是头插法,且头结点代表一个真正的节点,有实际值 
​
//head   表示头结点的下标
//e[i]   表示节点i的值
//ne[i]  表示节点i的next指针是多少 
//idx    相当于一个指针,指向现在用到的点的位置 
​
int head,e[N],ne[N],idx;
​
//初始化
void init()
{
    head = -1;
    idx = 0;
} 
​
//将新的点插到头结点的位置 
void add_head(int x)
{
    e[idx] = x;
    ne[idx] = head;
    head = idx;
    idx ++;
}
//将新的点插到下标是k的这个点的后面 
void add_node(int k, int x)
{
    e[idx] = x;
    ne[idx] = ne[k];
    ne[k] = idx;
    idx ++; 
} 
//删除
void del_node(int k)
{
    ne[k] = ne[ne[k]];      //k不一定是连续的数 
} 
​
int main()
{
    int m;
    cin>>m;
    
    init();
    
    while(m --)
    {
        char op;
        int x,k; 
        
        cin>>op;
        
        if(op == 'H')
        {
            cin>>x;
            add_head(x);
        }
        else if(op == 'D')
        {
            cin>>k;
            if(k == 0)
            {
                head = ne[head];
            }
            else del_node(k - 1);
        }
        else if(op == 'I')
        {
            cin>>k>>x;
            add_node(k - 1,x);
        } 
    }
    
    for(int i = head; i != -1; i = ne[i])
    {
        cout<<e[i]<<" ";
    }
    cout<<endl; 
    
    return 0;
} 

acwing - 827. 双链表

题目传送门

题目详情:

实现一个双链表,双链表初始为空,支持 5 种操作:

  1. 在最左侧插入一个数;

  2. 在最右侧插入一个数;

  3. 将第 k 个插入的数删除;

  4. 在第 k 个插入的数左侧插入一个数;

  5. 在第 k 个插入的数右侧插入一个数

现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。

注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. L x,表示在链表的最左端插入数 x。

  2. R x,表示在链表的最右端插入数 x。

  3. D k,表示将第 k 个插入的数删除。

  4. IL k x,表示在第 k 个插入的数左侧插入一个数。

  5. IR k x,表示在第 k 个插入的数右侧插入一个数。

输出格式

共一行,将整个链表从左到右输出。

数据范围

1≤M≤100000 所有操作保证合法。

输入样例:

10
R 7
D 1
L 3
IL 2 10
D 3
IL 2 7
L 8
R 9
IL 4 7
IR 2 2

输出样例:

8 7 7 3 2 9

分析:

  • 初始化 void init()

  • 右插入 void insert(int k, int x)

    • 注意:

      调用函数: insert(k + 1, x);

    • 第k个插入的数,相当于下标为k + 1的节点,因为第一个插入的数下标为2,第二个插入的数下标为3...以此类推,第k个插入的数下标为k + 1,所以图中节点k和第k个插入的数不相同,k的含义也不同。(0,1下标为虚拟头结点和尾结点,为了方便统一操作而设的,)

    • 第三步和第四步顺序不能反,如果第四步在第三步前面,会导致找不到第k个插入的数后面的节点

  • 左插入

    可以调用右插入这个函数:在k点的左侧插入一个数,相当于在l[k]这个点的右侧插入一个数

    调用函数:insert(l[k + 1], x);

  • 左右端点插入

    左端点即头结点下标为0,右端点即尾结点右侧节点的下标为l[1]

  • 删除 void remove(int k)

代码:

#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
​
const int N = 100010;
​
int e[N],l[N],r[N],idx;
​
//初始化
void init()
{
    //0表示左端点,1表示右端点
    r[0] = 1, l[1] = 0;
    idx = 2; 
} 
​
//右插入
//在下标是k的点的右边,插入x 
void insert(int k,int x)
{
    e[idx] = x;
    r[idx] = r[k];
    l[idx] = k;
    l[r[k]] = idx;
    r[k] = idx;
    idx ++; 
} 
​
//删除第k个点 
void remove(int k)
{
    r[l[k]] = r[k];
    l[r[k]] = l[k];
} 
​
int main()
{
    int m;
    init();
    cin>>m;
    
    while(m--)
    {
        string op;
        int k,x;
        
        cin>>op;
        if(op == "L") 
        {
            cin>>x;
            insert(0,x);
        }
        else if(op == "IL")
        {
            cin>>k>>x;
            insert(l[k + 1],x);
        }
        else if(op == "R")
        {
            cin>>x;
            insert(l[1],x);
        }
        else if(op == "IR")
        {
            cin>>k>>x;
            insert(k + 1,x);
        }
        else
        {
            cin>>k;
            remove(k + 1);
        }
    
    } 
    
    for(int i = r[0]; r[i] != 0; i = r[i])
    {
        cout<<e[i]<<" ";
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值