构建深度网络模型实现甲骨文识别

本项目实现了构建一个深度网络来进行对甲骨文的识别,主要项目在甲骨文项目下,数据集爬取代码文件时爬取数据集的爬虫代码。

在jiaguwen项目中,datasets下面是数据集,分为训练集和测试集,每个文件夹的子文件夹里面的所有图片代表同一个字的甲骨文。
model.py是构建的模型
train.py是训练代码
predict.py是测试单张图片并显示结果的代码,可修改相应的图片路径进行测试
main.py是测试多张甲骨文图片并统计结果的代码
我预训练好的98%以上准确率的模型在results文件夹下

首先选用残差网络(ResNet)来构建自己的模型架构

部分代码如下:

# 定义ResNet类
class ResNet(nn.Module):
    def __init__(self, block, blocks_num, num_classes=1000, include_top=True, groups=1, width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        # maxpool的输出通道数为64,残差结构的输入通道为64
        self.in_channel = 64
        self.groups = groups
        self.width_per_group = width_per_group
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # 浅层步长为1,深层的步长为2
        # block:定义了两种残差模块
        # block_num:定义了残差快的个数
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # 自适应平均池化,指定输出(H,w),通道数不变
            self.fc = nn.Linear(512 * block.expansion, num_classes)
        # 遍历网络中的每一层
        # 继承nn.Moudle类中的一个方法:self.Moudle(),它会返回该网络中所有的moudles
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # kaiming正态分布初始化,使得卷积层反向传播的输出的方差都为1
                # fan_in权重是通过线性层隐形确定
                # fan_out:通过创建随机矩阵显式创建权重
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion)
            )
        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))
        # Sequential:自定义顺序连接成模型,生成网络结构
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        # 上述都是静态层,下边是动态层
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
        return x

根据不同需要可选取不同的层数:

# 34层的resnet
def resnet34(num_classes=376, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


# 50层的resnet
def resnet50(num_classes=376, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


# 101层的resnet
def resnet101(num_classes=376, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

然后编写训练模型的代码,这里选用了34层的模型,部分代码如下:

   train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)
    # 加载测试数据集
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    # 测试集长度
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    # 模型实例化
    net = resnet34()
    net.to(device)

然后就可以在项目下得到最优的模型,我这里训练了准确度98%的模型在results文件夹下:

选用模型进行单张测试,也可以进行多张预测输出:

所有项目代码、数据集、数据集爬取爬虫代码地址构建深度模型实现甲骨文识别本项目实现了对甲骨文的识别,其中主要的代码在jiaguwen项目下面,数据集爬取代码文件夹里面是爬取数据集的爬虫代码。在jiaguwen项目下datasets下面是数据集,分为训练集和测试集,每个文件夹的子文件夹里面的所有图片代表同一个字的甲骨文。model.py是构建的模型tricon-default.png?t=N7T8https://mbd.pub/o/bread/ZpiZlp9p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值