基于大数据的外卖点餐餐饮商家数据可视化分析-Spark毕业设计选题推荐

💖💖作者:IT跃迁谷毕设展
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集

💕💕文末获取源码

基于大数据的外卖点餐餐饮商家数据可视化分析-选题背景

在外卖点餐餐饮行业的迅速发展背景下,大数据技术已经成为了一项重要的资源,为商家提供了丰富的数据来源。然而,这一行业也面临着暂时存在的问题,如消费者的点餐偏好和商家的经营策略之间的不明确性。这导致了许多餐饮商家无法有效地满足消费者需求,从而影响了他们的竞争力和盈利能力。
本课题旨在探讨如何利用大数据技术来进行外卖点餐餐饮商家数据的可视化分析。通过这项研究,我们将开发一种功能强大的工具,能够帮助餐饮商家更好地理解消费者点餐偏好,调整菜单和定价策略。我们将采用先进的数据挖掘和数据分析技术,包括机器学习算法,以揭示隐藏在大数据中的有价值信息。这将帮助商家更好地理解他们的市场,并优化运营。
本课题的意义在于提供了一个解决餐饮商家问题的方法,同时也推动了大数据在餐饮行业的应用。通过有效的数据可视化分析,餐饮商家可以提高他们的运营效率,满足消费者需求,并提高竞争力。

基于大数据的外卖点餐餐饮商家数据可视化分析-技术选型

大数据技术:Hadoop、Spark、Hive
开发技术:Python、Django框架、Vue、Echarts、机器学习
软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

基于大数据的外卖点餐餐饮商家数据可视化分析-图片展示

基于大数据的外卖点餐餐饮商家数据可视化分析-大屏
基于大数据的外卖点餐餐饮商家数据可视化分析-门店销售额排行
基于大数据的外卖点餐餐饮商家数据可视化分析-厨师等级营收贡献
基于大数据的外卖点餐餐饮商家数据可视化分析-销售金额与毛利月度趋势
基于大数据的外卖点餐餐饮商家数据可视化分析-坪效月度趋势
基于大数据的外卖点餐餐饮商家数据可视化分析-坪效销售统计

基于大数据的外卖点餐餐饮商家数据可视化分析-代码展示

//部分代码展示
import requests
import pandas as pd
import re
import csv
import json
import util
import time
'''
根据店铺id获取特色美食(名称、图片地址)、店铺分类
​
并保存到csv文件中
'
''
comment_data_path = ".\static\data\shop_comments.csv"
shop_data_path = ".\static\data\shop_details.csv"
​
comment_df = pd.read_csv(comment_data_path)
shop_df = pd.read_csv(shop_data_path)
​
# 获取店铺的id列表
def get_id():
    return list(shop_df['poiId'])
​
def get_detail_byId(id):
    '''
    :param list_id: 店铺id
    :return: 店铺信息
    '
''
    base_url = "https://XX.XX.com/XX/"
    open_url = base_url+str(id)
    headers = {
        'Accept': '*/*',
        'Accept-Encoding': 'gzip, deflate, br',
        'Accept-Language': 'zh-CN,zh;q=0.9',
        'Connection': 'keep-alive',
        'Host': 'my.meituan.com',
        'Referer': 'https://XX.XX.com/XX/',
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36',
        "Cookie":"_lxsdk_cuid=176a76e5465c8-08c7fda338591a-366b4108-144000-176a76e5466c8; _hc.v=47584a75-cd95-5d49-4774-f90292228934.1609128422; iuuid=DE08D7129F1C9300F442BD3F534FE1E9BEB5960DC89FC964B06DE75D92AF59FF; _lxsdk=DE08D7129F1C9300F442BD3F534FE1E9BEB5960DC89FC964B06DE75D92AF59FF; webp=1; __utma=74597006.1600449216.1609384800.1609384800.1609384800.1; __utmz=74597006.1609384800.1.1.utmcsr=link.csdn.net|utmccn=(referral)|utmcmd=referral|utmcct=/; ci=306; cityname=%E7%BB%B5%E9%98%B3; latlng=31.540156,104.689433,1609384831294; i_extend=C019032296837928515275757042931456002187_c14_e76093ef0e7669cc9c26a543f38b45487GimthomepageguessH__a; lsu=; __mta=221682599.1609128395200.1609636290109.1609637806937.14; client-id=aff308ba-8320-4796-8a4c-1303c58c5136; uuid=099f6650-8b35-423a-a6ea-3d226bb37422; _lx_utm=utm_source%3Dlink.csdn.net%26utm_medium%3Dreferral%26utm_content%3D%252F; lat=31.504214; lng=104.784832; _lxsdk_s=176ccfd3748-f1a-79a-0bb%7C%7C2"
    }
    res = requests.get(open_url,headers=headers)
    res.encoding = "utf-8"
    l = [id]  # 存储店铺信息的列表
    pattern = "<script>window._appState = (.*?);</script>"
    rec = re.compile(pattern)  # 预编译
    if rec.search(res.text):
        json_str = rec.search(res.text).groups()
        for j in json_str:
            d = json.loads(j)
            l.append(d['detailInfo']['name'])
            l.append(d['crumbNav'])
            l.append(d['recommended'])
            l.append(d['detailInfo']['avgScore'])
            l.append(d['detailInfo']['address'])
            l.append(d['detailInfo']['phone'])
            l.append(d['detailInfo']['openTime'])
            l.append(d['detailInfo']['avgPrice'])
            result = util.wgs84tobd09(d['detailInfo']['longitude'],d['detailInfo']['latitude'])
            l.append(result[0]['x'])
            l.append(result[0]['y'])
    return l
​
#保存店铺信息
def save_info(id_list):
    '''
    :param id_list: 店铺id列表
    :return:
    '
''
    with open("../static/data/shop_details02.csv","a+",encoding="utf-8",newline="") as f:
        # 2. 基于文件对象构建 csv写入对象
        csv_writer = csv.writer(f)
        # 3. 构建列表头
        # csv_writer.writerow(["poiId", "name", "type","recommended","avgScore","address","phone","openTime","avgPrice","longitude","latitude"],newline="")
        # 4. 写入csv文件内容
        for id in id_list:
            info_list = get_detail_byId(id)
            print(info_list)
            csv_writer.writerow(info_list)
# 清除csv文件中的空行
def clearBlankLine():
    file1 = open('../static/data/shop_details02.csv', 'r', encoding='utf-8') # 要去掉空行的文件
    file2 = open('../static/data/shop_details03.csv', 'w', encoding='utf-8') # 生成没有空行的文件
    try:
        for line in file1.readlines():
            if line == '\n':
                line = line.strip("\n")
            file2.write(line)
    finally:
        file1.close()
        file2.close()
​
​
def main():
    print("------{} 开始爬取数据------".format(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))))
    id_list = get_id()
    save_info(id_list)
    print("------{} 爬取数据结束------".format(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))))if __name__ == '__main__':
    main()

基于大数据的外卖点餐餐饮商家数据可视化分析-文档展示

基于大数据的外卖点餐餐饮商家数据可视化分析-文档展示

基于大数据的外卖点餐餐饮商家数据可视化分析-结语

💕💕
Java实战项目集
微信小程序实战项目集
Python实战项目集
安卓Android实战项目集
大数据实战项目集
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT跃迁谷毕设展

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值