约束多目标优化中Pareto前沿关系研究总结

1.UPF和CPF的关系类型与研究

现有的研究主要将UPF和CPF的空间关系大致分成四类,类型I:UPF与CPF相同; 类型II:UPF包含整个CPF;类型III:UPF包含CPF的一部分;类型IV:UPF不包含CPF的任何部分。对于I型问题,由于UPF与CPF之间的相似度非常高,找到一个完整的UPF变得很重要。相反,对于IV型问题,由于位于UPF上的不可行解对CPF无用,获取一个完整的UPF已经变得不重要了。

70724d1d8a064d968f5e7139164f7d57.png

1.1 关系类型区分流程图

162f89b705fe4be09d05182d0b7cc078.png

1.2 关系类型识别方法

初步分析:当UPF上的所有解都是可行解的时候对应类型I,而当UPF上的解都是不可行解的时候则对应类型IV,而如果UPF上的解既有可行解又有不可行解则可能是类型II或者类型III。

识别策略1:经过初步的分析,可行率被用于识别这三种类型情况,由于不是所有解都在真实PF上,所以首先需要拿到所有非支配个体,辅助种群用快速非支配排序方法拿到支配等级为1的个体P2_NO,然后计算P2_NO的可行率,如果可行率为1则为类型I,如果可行率为0则为类型IV,如果可行率位于(0,1)则初步归为类型II和类型III中去。

进一步分析类型II和类型III:可以看出如果只考虑目标值的好坏时,类型II的CPF上的解全是非支配个体,因为UPF包含了所有的CPF,而类型III的CPF上的解有一部分是被支配的个体。

识别策略2:通过进一步的分析,将UPF上的所有非支配个体和CPF上的所有非支配个体合并到一个临时集合temp,然后对这个集合temp中的所有个体进行快速非支配排序,计算出CPF上的个体的支配等级,如果大多数都是非支配个体则为类型II,否则则为类型III。为什么不是说所有个体都是非支配个体才归为类型II呢?因为CPF和UPF具有不同的几何形状。此外,约束可以使CPF具有更复杂的特性,例如不规则和离散。所以空间上只是大致分为这四种类型,因此一个松弛条件识别类型的效果会更加好。

2.SCPF和SubCPF关系类型与研究

现有的研究主要将SCPF和SubCPF关系分成四类,举有两个约束的问题为例,类型I:SubCPF 仅与一个约束的 SCPF 相关,另一个 SCPF 与 SubCPF 无关。在这种情况下,相关的那个支配另一个(DASCMOP5 的约束1和约束2); 类型II:两个约束的SCPF都与SubCPF相关(LIRC-MOP5的约束1和约束2);类型III:两个约束的SCPF都与SubCPF有关并且SubCPF有一个与这两个SCPF都无关的新部分。这两个约束的SCPF不能完全与SubCPF相关(MW11中的约束1和约束3);类型IV:两个SCPF都与SubCPF无关(LIRCMOP1中的约束1和约束2)。

d1845eb600f348de86464c2831500e6a.png

【注】:SCPF指只考虑单个约束条件的Pareto前沿,SubCPF则是指组合约束条件下的Pareto前沿。对于图c,较大块的浅绿色部分也有SubCPF,虽然同时满足约束1和约束2,但是不是跟约束1的PF和约束2的PF相关,所以这部分的SubCPF与这两个SCPF都无关。同理可以理解图d。

2.1为什么要将约束单独分开?

约束之间存在支配关系,例如图a中约束1下的PF支配约束2下的前沿,我们可以通过使用这些关系来处理有用的约束,而帮助性很小的约束可以合并到一起用来节省计算资源。

2.2 为什么要将不同约束组合成SubCPF?

两个约束的SCP可能与它们的SubCPF有关,例如图b和c两个单约束PF都和SubCPF相关。因此,不仅SCP有助于解决最终的CPF,SubCPF也有帮助。

2.3 应该在什么时机下组合?

两种情况下应该结合约束来同时处理:1)当种群达到约束的边界并停止前进时,这种情况下的种群已经趋于稳定,重复的知识被反复传递,帮助性越来越小,所以需要进行合并得到满足更多的约束种群来提供更大的帮助;2)当一个约束支配另一个约束时,因为相比满足更好的约束(即被支配的约束)满足更差的约束条件的解会更加接近最终要找到的解。

具体实现:(1)将所有的SCP种群放到一起用快速非支配排序计算它们的支配等级,当SCPi种群到达SCPF时,此时SCPi种群基本停止前进,需要准备合并。然后我们取SCPi种群的最小支配等级Mini与未准备合并的SCPj(i≠j)种群的最大支配的等级Maxj进行比较,当Mini>Maxj时(满足情况2),此时SCPj种群也需要准备合并。(2)主种群考虑所有约束条件,记为ACP,当无约束种群UCP到达UPF时,此时UCP和SCPi已经对目标空间完成了初步的探索。计算ACP和SCPi的的支配等级,如果ACP的最小支配等级大于SCPi的最大支配等级,则此时SCPi准备合并。

2.4总结

这其实就是一个约束逐渐增加的过程,不断地满足所有约束条件直到寻找到可行解。传统的方法一般是直接计算所有约束来不断的优化找到可行解,这会浪费约束之间有用的信息。并且很容易就陷入局部最优,过早收敛导致多样性很差。所以逐步探索所有约束既可以有效利用约束之间的信息也能增强种群的多样性。对于图b和图c的关系类型识别还有待研究。

3.参考文献

J. Liang et al., "Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization," in IEEE Transactions on Cybernetics, vol. 53, no. 6, pp. 3873-3886, June 2023, doi: 10.1109/TCYB.2022.3163759.

J. Zou et al., "A Multipopulation Evolutionary Algorithm Using New Cooperative Mechanism for Solving Multiobjective Problems With Multiconstraint," in IEEE Transactions on Evolutionary Computation, vol. 28, no. 1, pp. 267-280, Feb. 2024, doi: 10.1109/TEVC.2023.3260306.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值