(力扣C++)动态规划学习计划

本文介绍了动态规划中使用数组滚动法解决斐波那契数、泰波那契数、爬楼梯、使用最小花费爬楼梯、打家劫舍、跳跃游戏等经典问题,提供详细题解和解题思路,旨在帮助读者深入理解动态规划的运用。
摘要由CSDN通过智能技术生成

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。

示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

0 <= n <= 30

题解::数组滚动法

class Solution {
public:
    int fib(int n) {
        if(n==1)
        return 1;
        if(n==0)
        return 0;
        int q1=0;int q2=1;int q3;
        for(int i=2;i<=n;i++)
        {
          q3=q1+q2;  
          q1=q2; 
          q2=q3;
        }
return q2;
    }
};

1137. 第 N 个泰波那契数

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:

输入:n = 25
输出:1389537

提示:

0 <= n <= 37
答案保证是一个 32 位整数,即 answer <= 2^31 - 1。

题解:数组滚动法

class Solution {
public:
    int tribonacci(int n) {

        if(n==1)
        return 1;
        if(n==0)
        return 0;
        if(n==2)
        return 1;        
        int q1=1;int q2=1;int q0=0;int q4=0,q3=0;
        for(int i=3;i<=n;i++)
        {
          q3=q1+q2+q0;  
          q0=q1;
          q1=q2; 
          q2=q3;       
        }
return q3;
    }
};

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶
    示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
3. 1 阶 + 1 阶 + 1 阶
4. 1 阶 + 2 阶
5. 2 阶 + 1 阶

题解:数组滚动法

class Solution {
public:
    int climbStairs(int n) {
        if(n==1)
        return 1;
        if(n==2)
        return 2;
         if(n==3)
        return 3;
        int q2=2;int q3=3;int q4;
        for(int i=4;i<=n;i++)
        {
          q4=q3+q2;  
          q2=q3; 
          q3=q4;
        }
        return q4;
    }
};

746. 使用最小花费爬楼梯

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。
示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

提示:

cost 的长度范围是 [2, 1000]。
cost[i] 将会是一个整型数据,范围为 [0, 999] 。

题解(小牛问题):

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
    int n=cost.size();
    vector<int> qwe(n+1);
    qwe[0]=qwe[1]=0;
    for(int i=2;i<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值