问题描述:
构造一个具有n个外部节点的扩充二叉树,每个外部节点Ki有一个Wi对应,作为该外部节点的权。使得这个扩充二叉树的叶节点带权外部路径长度总和最小:
Min( W1 * L1 + W2 * L2 + W3 * L3 + … + Wn * Ln)
Wi:每个节点的权值。
Li:根节点到第i个外部叶子节点的距离。
编程计算最小外部路径长度总和。
输入
第一行输入一个整数t,代表测试数据的组数。
对于每组测试数据,第一行输入一个整数n,外部节点的个数。第二行输入n个整数,代表各个外部节点的权值。
2<=N<=100
输出
输出最小外部路径长度总和。
样例输入
2
3
1 2 3
4
1 1 3 5
样例输出
9
17
http://dsalgo.openjudge.cn/binarytree/2/
个人见解:
看到这个题的第一想法是把树构建出来,然后按照计算WPL公式的方法来解决这个问题,并没有想到要用最小值优先队列
1.最小值优先队列(方便计算最小外部路径长度总和)
头文件#include<queue>
priority_queue<int,vector<int>,greater<int> > z;

本文探讨了如何构建一个具有n个外部节点的扩充二叉树,以使叶节点的带权外部路径长度总和最小。通过使用最小值优先队列(最小堆)和贪心策略,每次合并频率最小的两个节点,更新总和并继续此过程,直至只剩下一个节点。在实现过程中需要注意使用循环输入时要清空队列,避免错误。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



