编译原理-LL(1)文法判别-避免繁琐,依据规则进行掌握

目录

一. 规则

二. 例题

例题1

例题2

例题3

解析

答案写法


一. 规则

请注意记忆,最好阅读2遍以上,方便后边使用,或者看一遍之后用手挡住内容,然后说出关键词即可

步骤:

  • (1)经观察,该文法不包括直接或间接左公因子,不包括直接或者间接左递归若含有其中之一,则不是LL(1)文法

   解释:左公因子:在产生式的右侧,从开始位置开始的一段相同的符号序列。

              直接左公因子:形如A->ab|a   ab∩a=a    A->Bc|B   Bc∩B=B

              直接左递归:形如A->Aa|b 为直接左递归

              间接左递归:形如A->Ba   B->A  则ABa

  • (2)找出隐含为空的产生式(若产生式右侧有终结符,隐含不为空,无终结符则可能为空)

    解释:将隐含为空的单独列出来,方便后面求SELECT集

  • (3)求FIRST集产生式右侧第一个终结符,可以为空)(自下往上求较方便)

  • (4)求FOLLOW集(求谁的FOLLOW集,就是它在所有产生式中后面所跟着的第一个终结符)(自上往下求较方便) 

               若为空选择产生式左侧非终结符的FOLLOW集

               开始符号的FOLLOW集必有#(原因,文法的结束为: #开始符#)

  • (5)求SELECT集(若产生式为空则选择Follow集,产生式不为空选择FIRST集)

  • (6)判段同一个非终结符的所有产生式SELECT集是否有交集,若有交集,该文法不是LL(1)文法,若无交集,则该文法是LL(1)文法

  • (7)若不是LL(1)文法,列出一条交集说明即可,若是LL(1)文法,则需要全部列出来进行说明

二. 例题

例题1

有下列G[s]文法,判断是不是LL(1)文法

(1)

    S->A|B      

    A-> aA|a        aA∩a=a  有左公因子,为非LL(1)文法

    B->bB|b         bB∩b 有左公因子  为非LL(1)文法

(2)

    S->SaA|bB

    A->aB|c        间接左公因子c,为非LL(1)文法

    B->Cb|cd      间接左递归,为非LL(1)文法

    C->Ba           间接做递归,为非LL(1)文法         

    D->Db           直接左递归,为非LL(1)文法

例题2

已知:文法G[S]为

S->AB|bC

A->ε|b

B->ε|aD

C->AD|b

D->aS|c

判断该文法是否为LL(1)文法

解析:

S=>AB=>(ε|b)(ε|aD)=>aD|b|baD 

其中,b∩baD=b,A的产生式中有左公因子,因此该产生式不是LL(1)文法

例题3

已知文法G[S]:

(提示:分析过程较长,可以把产生式截图,边看边思考,答案在最下方)

1. S->MH|a

2. H->LSo|ε

3. K->dML|ε

4. L->eHf

5. M->K|bLM   (温馨提示:这里的M在右侧,不是左递归)

判断G是否为LL(1)文法,如果是,构造LL(1)分析表。

解析

(这里是分析过程,实际步骤在下方)

(1)经观察,该文法中不存在左公因子或者左递归,无法确定该文法是否为LL(1)文法,需要进行以下步骤

(2)S=>MH=>εH=>H=>ε,S隐含为空        M=>K=>ε,M隐含为空

(3)求FIRST集(自下而上)

① M的FIRST集

M=>K =>(dML|ε)=>dML | ε      ,得 FIRST(M)={d,ε}

M=> bLM     ,得 FIRST(M)=>{b}

②L的FIRST集

L=>eHf      ,得  FIRST(L)={e}

③ K的FIRST集

K=>dML  ,得FIRST(K)={d}

k=>ε         ,得 FIRST(K)={ε}

④H的FIRST集

H => LSo => eHfSo          ,得FIRST(H)={e}

H=>ε                 ,得FIRST(H)={ε}

⑤S的FIRST集

S=>MH

FIRST(S)=FISRT(M)H={b,d,FIRST(H))=>{b,d,e,ε}

解释:当M为ε,且后面有非终结符时,需要考虑该产生式中它后面的终结符

S=>a    FIRST(S)=>{a}

(4)求FOLLOW集(自上而下求)

1. S->MH|a

2. H->LSo|ε

3. K->dML|ε

4. L->eHf

5. M->K|bLM 

①FOLLOW(S) ={#,o}   

解释:开始符的FOLLOW集必有#,而看遍所有产生式后,发现只有2产生式右侧中有S,且S后面第一个终结符为o

②FOLLOW(H)={Follow(S),f}={#,o,f}   

解释:1产生式后有H,但H后无终结符,因此需要找S的FOLLOW集,即FOLLOW(S)  

③FOLLOW(K)={Follow(M)}={FIRST(H), FIRST(L)}={FIRST(H),FOLLOW(S), FIRST(L)}-{ε}={e,#,o}

解释:

  • 5产生式后有K,但K后无终结符,因此需要找FOLLOW(M)。
  • 1,3,5产生式有M
  • 1中M的后面为H,求M后面的终结符即求H的第一个终结符,即FIRST(H),当H为ε时M的后面无终结符,即需要求S的FOLLOW集,即FOLLOW(S)          
  • 3中M的后面为L,即求FIRST(L)
  • 5中M的后面无终结符,即求FOLLOW(M),与所求本身相同,即不会增加FOLLOW集元素,因此无需考虑

④FOLLOW(L)={FIRST(S),FOLLOW(K),FIRST(M)}={FIRST(S),o,FOLLOW(K),FIRST(M),FOLLOW(M)}-{ε}={a,b,d,e,o,#}

解释:

  • 2,3,5中产生式后含有L
  • 2中,L后为S,即L后终结符为FIRST(S),S为空时,L后终结符为o
  • 3中,L后为空,即L后的终结符看FOLLOW(K),
  • 5中,L后为M,即L后的终结符为FIRST(M),当M为空时,L后的终结符看FOLLOW(M)

⑤FOLLOW(M)={e,#,o}

解释:由③可得

(5)SELECT集:产生式为空选择FOLLOW集,产生式不为空选择FIRST集

(6)分析表如下图所示:

LL(1)分析表
FIRST集FOLLOW集SELECT集

S->MH

S->a

S->ε

{b,d,e}

{a}

{ε}

{#,o}

{b,d,e}

{a}

{#,o}

H->LSo

H->ε

{e}

{ε}

{#,o,f} 

{e}

{#,o,f} 

K->dML

K->ε

{d}

{ε}

{e,#,o}

{d}

{e,#,o}

L->eHf{e}{b,d,e,o,#}{e}

M->K

M->bLM

M->{ε}

{d}

{b}

{ε}

{e,#,o}

{d}

{b}

{e,o,#}

(7)判别是否为LL(1)文法

∵SELCT(S->MH)∩SELECT(S->a)∩SELECT(S->ε)=∅

   SELECT(H->LSo)∩ SELECT(H->ε)=∅

   SELECT(K->dML)∩SELECT(K->ε)=∅

   (L只有一个产生式不会有交集就不写了)

    SELECT(M->ε)∩SELECT(M->bLM)∩SELECT(M->ε)=∅

∴该文法G[S]是LL(1)文法

   

答案写法

LL(1)分析表
FIRST集FOLLOW集SELECT集

S->MH

S->a

S->ε

{b,d,e}

{a}

{ε}

{#,o}

{b,d,e}

{a}

{#,o}

H->LSo

H->ε

{e}

{ε}

{#,o,f} 

{e}

{#,o,f} 

K->dML

K->ε

{d}

{ε}

{e,#,o}

{d}

{e,#,o}

L->eHf{e}{b,d,e,o,#}{e}

M->K

M->bLM

M->{ε}

{d}

{b}

{ε}

{e,#,o}

{d}

{b}

{e,o,#}

        ∵SELCT(S->MH)∩SELECT(S->a)∩SELECT(S->ε)=∅

           SELECT(H->LSo)∩ SELECT(H->ε)=∅

           SELECT(K->dML)∩SELECT(K->ε)=∅

           (L只有一个产生式不会有交集就不写了)

            SELECT(M->ε)∩SELECT(M->bLM)∩SELECT(M->ε)=∅

        ∴该文法G[S]是LL(1)文法

本程序的所用的存储结构都是string类型的,最主要的存储文法的数据结构为自定义结构,里面包括一个产生式的左部,右部以及select集合,至于非终结符的first和follow集合,则是定义了一个string类型的数组进行存储。 本程序的求first,follow,select集合的算法即为书上所介绍的方法,即求first的集合时,只看本产生式,求follow集合时,要进行递归查找一个非终结符的所有后跟字符,求select其实就是对first与follow集合的运算,最终根据所有的select集合,便可以判断文法是否为LL1文法。 对于不是LL1文法的产生式,本程序在判断后进行转换,先进行消除左递归,然后提取左公因子,在这两步的每一步结束之后,都要对产生式进行整合,去掉空存储,去掉无法到达的产生式,将select全部置空。 每进行一次非LL1)到LL1)的转换之后,都要对其文法性质进行判断,如果是LL1),则跳出,不是则继续,但是当循环一定次数之后仍不是,程序判定其无法转换,也要跳出。 其中还有对第一个非终结字符的右部替换与否进行选择,原因是,有些通过替换就可以很方便的进行转换,这个要通过人为进行输入。 提取公因子中也有上一段所说的类似的判断机制,目的是为了防止文法的左公因子无法提取完的情况出现。 最终有三种结果,一种是是LL1文法,一种是不是LL1),但是经过转换变成了LL1),还有一种是经过转换也无法变成LL1)。 输入文本格式样例: A A->ad A->Bc B->aA B->bB
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值