目录
一. 规则
请注意记忆,最好阅读2遍以上,方便后边使用,或者看一遍之后用手挡住内容,然后说出关键词即可
步骤:
- (1)经观察,该文法不包括直接或间接左公因子,不包括直接或者间接左递归,若含有其中之一,则不是LL(1)文法
解释:左公因子:在产生式的右侧,从开始位置开始的一段相同的符号序列。
直接左公因子:形如A->ab|a ab∩a=a A->Bc|B Bc∩B=B
直接左递归:形如A->Aa|b 为直接左递归
间接左递归:形如A->Ba B->A 则ABa
- (2)找出隐含为空的产生式(若产生式右侧有终结符,隐含不为空,无终结符则可能为空)
解释:将隐含为空的单独列出来,方便后面求SELECT集
- (3)求FIRST集(产生式右侧第一个终结符,可以为空)(自下往上求较方便)
- (4)求FOLLOW集(求谁的FOLLOW集,就是它在所有产生式中后面所跟着的第一个终结符)(自上往下求较方便)
若为空选择产生式左侧非终结符的FOLLOW集
开始符号的FOLLOW集必有#(原因,文法的结束为: #开始符#)
- (5)求SELECT集(若产生式为空则选择Follow集,产生式不为空选择FIRST集)
- (6)判段同一个非终结符的所有产生式中SELECT集是否有交集,若有交集,该文法不是LL(1)文法,若无交集,则该文法是LL(1)文法
- (7)若不是LL(1)文法,列出一条交集说明即可,若是LL(1)文法,则需要全部列出来进行说明
二. 例题
例题1
有下列G[s]文法,判断是不是LL(1)文法
(1)
S->A|B
A-> aA|a aA∩a=a 有左公因子,为非LL(1)文法
B->bB|b bB∩b 有左公因子 为非LL(1)文法
(2)
S->SaA|bB
A->aB|c 间接左公因子c,为非LL(1)文法
B->Cb|cd 间接左递归,为非LL(1)文法
C->Ba 间接做递归,为非LL(1)文法
D->Db 直接左递归,为非LL(1)文法
例题2
已知:文法G[S]为
S->AB|bC
A->ε|b
B->ε|aD
C->AD|b
D->aS|c
判断该文法是否为LL(1)文法
解析:
S=>AB=>(ε|b)(ε|aD)=>aD|b|baD
其中,b∩baD=b,A的产生式中有左公因子,因此该产生式不是LL(1)文法
例题3
已知文法G[S]:
(提示:分析过程较长,可以把产生式截图,边看边思考,答案在最下方)
1. S->MH|a
2. H->LSo|ε
3. K->dML|ε
4. L->eHf
5. M->K|bLM (温馨提示:这里的M在右侧,不是左递归)
判断G是否为LL(1)文法,如果是,构造LL(1)分析表。
解析
(这里是分析过程,实际步骤在下方)
(1)经观察,该文法中不存在左公因子或者左递归,无法确定该文法是否为LL(1)文法,需要进行以下步骤
(2)S=>MH=>εH=>H=>ε,S隐含为空 M=>K=>ε,M隐含为空
(3)求FIRST集(自下而上)
① M的FIRST集
M=>K =>(dML|ε)=>dML | ε ,得 FIRST(M)={d,ε}
M=> bLM ,得 FIRST(M)=>{b}
②L的FIRST集
L=>eHf ,得 FIRST(L)={e}
③ K的FIRST集
K=>dML ,得FIRST(K)={d}
k=>ε ,得 FIRST(K)={ε}
④H的FIRST集
H => LSo => eHfSo ,得FIRST(H)={e}
H=>ε ,得FIRST(H)={ε}
⑤S的FIRST集
S=>MH
FIRST(S)=FISRT(M)H={b,d,FIRST(H))=>{b,d,e,ε}
解释:当M为ε,且后面有非终结符时,需要考虑该产生式中它后面的终结符
S=>a FIRST(S)=>{a}
(4)求FOLLOW集(自上而下求)
1. S->MH|a
2. H->LSo|ε
3. K->dML|ε
4. L->eHf
5. M->K|bLM
①FOLLOW(S) ={#,o}
解释:开始符的FOLLOW集必有#,而看遍所有产生式后,发现只有2产生式右侧中有S,且S后面第一个终结符为o
②FOLLOW(H)={Follow(S),f}={#,o,f}
解释:1产生式后有H,但H后无终结符,因此需要找S的FOLLOW集,即FOLLOW(S)
③FOLLOW(K)={Follow(M)}={FIRST(H), FIRST(L)}={FIRST(H),FOLLOW(S), FIRST(L)}-{ε}={e,#,o}
解释:
- 5产生式后有K,但K后无终结符,因此需要找FOLLOW(M)。
- 1,3,5产生式有M
- 1中M的后面为H,求M后面的终结符即求H的第一个终结符,即FIRST(H),当H为ε时M的后面无终结符,即需要求S的FOLLOW集,即FOLLOW(S)
- 3中M的后面为L,即求FIRST(L)
- 5中M的后面无终结符,即求FOLLOW(M),与所求本身相同,即不会增加FOLLOW集元素,因此无需考虑
④FOLLOW(L)={FIRST(S),FOLLOW(K),FIRST(M)}={FIRST(S),o,FOLLOW(K),FIRST(M),FOLLOW(M)}-{ε}={a,b,d,e,o,#}
解释:
- 2,3,5中产生式后含有L
- 2中,L后为S,即L后终结符为FIRST(S),S为空时,L后终结符为o
- 3中,L后为空,即L后的终结符看FOLLOW(K),
- 5中,L后为M,即L后的终结符为FIRST(M),当M为空时,L后的终结符看FOLLOW(M)
⑤FOLLOW(M)={e,#,o}
解释:由③可得
(5)SELECT集:产生式为空选择FOLLOW集,产生式不为空选择FIRST集
(6)分析表如下图所示:
| FIRST集 | FOLLOW集 | SELECT集 | |
|---|---|---|---|
| S->MH S->a S->ε | {b,d,e} {a} {ε} | {#,o} | {b,d,e} {a} {#,o} |
| H->LSo H->ε | {e} {ε} | {#,o,f} | {e} {#,o,f} |
| K->dML K->ε | {d} {ε} | {e,#,o} | {d} {e,#,o} |
| L->eHf | {e} | {b,d,e,o,#} | {e} |
| M->K M->bLM M->{ε} | {d} {b} {ε} | {e,#,o} | {d} {b} {e,o,#} |
(7)判别是否为LL(1)文法
∵SELCT(S->MH)∩SELECT(S->a)∩SELECT(S->ε)=∅
SELECT(H->LSo)∩ SELECT(H->ε)=∅
SELECT(K->dML)∩SELECT(K->ε)=∅
(L只有一个产生式不会有交集就不写了)
SELECT(M->ε)∩SELECT(M->bLM)∩SELECT(M->ε)=∅
∴该文法G[S]是LL(1)文法
答案写法
| FIRST集 | FOLLOW集 | SELECT集 | |
|---|---|---|---|
| S->MH S->a S->ε | {b,d,e} {a} {ε} | {#,o} | {b,d,e} {a} {#,o} |
| H->LSo H->ε | {e} {ε} | {#,o,f} | {e} {#,o,f} |
| K->dML K->ε | {d} {ε} | {e,#,o} | {d} {e,#,o} |
| L->eHf | {e} | {b,d,e,o,#} | {e} |
| M->K M->bLM M->{ε} | {d} {b} {ε} | {e,#,o} | {d} {b} {e,o,#} |
∵SELCT(S->MH)∩SELECT(S->a)∩SELECT(S->ε)=∅
SELECT(H->LSo)∩ SELECT(H->ε)=∅
SELECT(K->dML)∩SELECT(K->ε)=∅
(L只有一个产生式不会有交集就不写了)
SELECT(M->ε)∩SELECT(M->bLM)∩SELECT(M->ε)=∅
∴该文法G[S]是LL(1)文法
1万+

被折叠的 条评论
为什么被折叠?



