一元线性回归python代码

本文介绍了在一元线性回归中,如何使用梯度下降法和最小二乘法进行模型训练。通过相关系数评估线性关系,并展示了Python代码实现这两个方法,包括数据可视化,以解释实际应用。

目录

1.最小二乘法:

2.梯度下降法:

3.理论加实践:

4.python代码:

4.1梯度下降法:

4.2最小二乘法


 

      学习引入:机器学习中的参数模型(线性回归,逻辑回归)等。在这里我们只进行一元线性回归的学习,求一元线性回归有两种方法梯度下降法,最小二乘法

     梯度下降法:通过建模找到一个最大程度拟合数据的模型,通过确定损失函数,最优化目标函数来进行学习

回归分析:

     最下二乘法:利用已知的数据(线性回归中需要找到一条直线)最大程度的拟合样本与输出标记,即产生拟合方程,从而对未知的数据进行估预测.

如何判断是否选用线性模型处理问题?

使用相关系数r衡量特征与标记之间的相关性强弱,判断是否适合用直线进行拟合,r为0到1的值,越接近1,相关性越强

如果x与y有较强的相关的模型,则有y=ax+b

寻找合适的参数a,b,使得误差即损失最小

1.最小二乘法:

最小二乘法求解最小值:

 

2.梯度下降法:

一元线性回归公式:

求解的方法:首先构造损失函数,然后对损失函数进行求偏导,之后利用前面讲过的梯度下降进行更新迭代,求得最后的一元线性方程。下面有一些简单的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值