第T1周:实现mnist手写数字识别

本周任务:

  1. 跑通程序
  2. 了解深度学习是什么

一、前期工作

1.设置GPU(如果使用的CPU可以忽略这步)

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2.导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化

数据归一化作用:

  • 使不同量纲的特征处于统一数值量级,减少方差大的特征的影响,使模型更准确。
  • 加快学习算法的收敛速度。
# 将像素的值标准化至0到1区间内。(对于灰度图片来说,每个像素的最大值是255,每个像素的最小值是0,也就是直接除以255就可以完成归一化。)
train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维度信息
train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

运行结果:

((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))

4.可视化图片

# 将数据集前20个图片数据进行可视化显示
# 进行图像大小为20宽、10长的绘图(单位为英寸inch)
plt.figure(figsize=(20,10))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分别5行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示y轴刻度
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt.show()

image-20231230002333826

5.调整图片格式

# 调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

运行结果:

((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))

二、构建CNN网络模型

网络结构图:

img

# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征提取
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLU函数,input_shape参数将图层的输入形状设置为(28,28,1)
    # ReLU函数作为激励函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层
    # 相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而不会对模型的泛化准确度造成显著影响。
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    # 池化层1, 2*2采样
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu', ),
    # 池化层1, 2*2采样
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),  # Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),  # 全连接层,特征进一步提取,64为输出空间的维度,activation参数将激活函数设置为ReLU函数
    layers.Dense(10)   # 输出层,输出预期结果,10为输出空间的维数
])
# 打印网络结构
model.summary()

运行结果:

image-20231230002626579

三、编译模型

# 这里设置优化器、损失函数以及metrics
# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
    # 设置优化器为Adam优化器
    optimizer = 'adam',
    # 设置损失函数为交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics = ['accuracy']
)

四、训练模型

# 这里设置输入训练数据集(图片及标签)、验证数据集(图片及标签)以及迭代次数epochs
history = model.fit(
    train_images,
    train_labels,
    epochs=10,
    validation_data=(test_images, test_labels))

运行结果:

image-20231230002812835

五、预测

通过下面的网络结构,我们可以简单地理解为:输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率(并非概率), out数字越大可能性越大,仅此而已。

image-20231230004017769

plt.imshow(test_images[1])

运行结果:

image-20231230004116800

输出测试集中第一张图片的预测结果:

pre = model.predict(test_images)  # 对所有测试图片进行预测
pre[1]  # 输出第一张图片的预测结果

运行结果:

image-20231230004304417

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值