从新浪财经行情中心获取每天的行情数据
from urllib.request import urlopen
import pandas as pd
from datetime import datetime
import time
import re
import os # 系统库
import json # python自带的json数据库
# =====函数:从网页上抓取数据
def get_content_from_internet(url, max_try_num=10, sleep_time=5):
get_success = False # 是否成功抓取到内容
# 抓取内容
for i in range(max_try_num):
try:
content = urlopen(url=url, timeout=10).read() # 使用python自带的库,从网络上获取信息
get_success = True # 成功抓取到内容
break
except Exception as e:
print('抓取数据报错,次数:', i+1, '报错内容:', e)
time.sleep(sleep_time)
# 判断是否成功抓取内容
if get_success:
return content
else:
raise ValueError('使用urlopen抓取网页数据不断报错,达到尝试上限,停止程序,')
# =====函数:从新浪获取指定股票的数据
def get_today_data_from_sinajs(code_list):
# 构建url
url = "http://hq.sinajs.cn/list=" + ",".join(code_list)
# 抓取数据
content = get_content_from_internet(url)
content = content.decode('gbk')
# 将数据转换成DataFrame
content = content.strip() # 去掉文本前后的空格、回车等
data_line = content.split('\n') # 每行是一个股票的数据
data_line = [i.replace('var hq_str_', '').split(',') for i in data_line]
df = pd.DataFrame(data_line, dtype='float') #
# 对DataFrame进行整理
df[0] = df[0].str.split('="')
df['stock_code'] = df[0].str[0].str.strip()
df['stock_name'] = df[0].str[-1].str.strip()
df['candle_end_time'] = df[30] + ' ' + df[31] # 股票市场的K线,是普遍以当跟K线结束时间来命名的
df['candle_end_time'] = pd.to_datetime(df['candle_end_time'])
rename_dict = {1: 'open', 2: 'pre_close', 3: 'close', 4: 'high', 5: 'low', 6: 'buy1', 7: 'sell1',
8: 'amount', 9: 'volume', 32: 'status'} # 自己去对比数据,会有新的返现
# 其中amount单位是股,volume单位是元
df.rename(columns=rename_dict, inplace=True)
df['status'] = df['status'].str.strip('";')
df = df[['stock_code', 'stock_name', 'candle_end_time', 'open', 'high', 'low', 'close', 'pre_close', 'amount',
'volume', 'buy1', 'sell1', 'status']]
return df
# =====函数:判断今天是否是交易日
def is_today_trading_day():
# 获取上证指数今天的数据
df = get_today_data_from_sinajs(code_list=['sh000001'])
sh_date = df.iloc[0]['candle_end_time'] # 上证指数最近交易日
# 判断今天日期和sh_date是否相同
return datetime.now().date() == sh_date.date()
# =====函数:从新浪获取所有股票的数据
def get_all_today_stock_data_from_sina_marketcenter():
# ===数据网址
raw_url = 'https://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHQNodeData?page=%s' \
'&num=80&sort=changepercent&asc=0&node=hs_a&symbol=&_s_r_a=setlen'
page_num = 1
# ===存储数据的DataFrame
all_df = pd.DataFrame()
# ===获取上证指数最近一个交易日的日期。
df = get_today_data_from_sinajs(code_list=['sh000001'])
sh_date = df.iloc[0]['candle_end_time'].date() # 上证指数最近交易日
# ===开始逐页遍历,获取股票数据
while True:
# 构建url
url = raw_url % (page_num)
print('开始抓取页数:', page_num)
# 抓取数据
content = get_content_from_internet(url)
content = content.decode('gbk')
# 判断页数是否为空
if 'null' in content:
print('抓取到页数的尽头,退出循环')
break
# 通过正则表达式,给key加上引号
content = re.sub(r'(?<={|,)([a-zA-Z][a-zA-Z0-9]*)(?=:)', r'"\1"', content)
# 将数据转换成dict格式
content = json.loads(content)
# 将数据转换成DataFrame格式
df = pd.DataFrame(content, dtype='float')
# 对数据进行整理
# 重命名
rename_dict = {'symbol': '股票代码', 'name': '股票名称', 'open': '开盘价', 'high': '最高价', 'low': '最低价',
'trade': '收盘价', 'settlement': '前收盘价', 'volume': '成交量', 'amount': '成交额'}
df.rename(columns=rename_dict, inplace=True)
# 添加交易日期
df['交易日期'] = pd.to_datetime(sh_date)
# 取需要的列
df = df[['股票代码', '股票名称', '交易日期', '开盘价', '最高价', '最低价', '收盘价', '前收盘价', '成交量', '成交额']]
# 合并数据
all_df = all_df.append(df, ignore_index=True)
# 将页数+1
page_num += 1
time.sleep(1)
# ===将当天停盘的股票删除,
all_df = all_df[all_df['开盘价'] - 0 > 0.00001]
all_df.reset_index(drop=True, inplace=True)
# ===返回结果
return all_df
# 获取今天所有的股票数据
df = get_all_today_stock_data_from_sina_marketcenter()
print(df)