丁香园临床预测模型课程 第7章

#第7章 Fine-Grey检验与竞争风险模型 ####
#也是用于处理生存资料

#7.1 Fine-Grey检验 ####
install.packages("cmprsk")
install.packages("splines")

library(foreign)    #读取文件
library(survival)   #生存分析包
library(cmprsk)     #竞争风险包
library(splines)

bmt <- read.csv("D:/BaiduNetdiskDownload/bmtcrr.csv")
#数据框bmt变量解释:sex性别,D疾病类型(ALL?AML?),Phase阶段,Age年龄,
#Source移植方式(骨髓移植+血液移植?血液移植?),ftime复发时间
#Status结局(0删失,1复发,2移植相关死亡)
head(bmt)
bmt$D <- as.factor(bmt$D)
attach(bmt)
crmod <- cuminc(bmt$ftime,bmt$Status,bmt$D)
#纳入生存时间ftime和生存状态Status,比较不同组别发生1事件或2事件的可能性是否相等
crmod
plot(crmod,xlab = "月",ylab = "CIF",col = c("red","blue","orange","forestgreen"))
#读图可知,ALL比AML的复发风险高,AML比ALL的移植相关死亡风险高
#但是P值>0.05,没有统计学意义,所以上述结论并不成立

#7.2 竞争风险模型 ####
cov1 <- data.frame(age = bmt$Age,sex_F = ifelse(bmt$Sex == "F",1,0),
                   dia_AML = ifelse(bmt$D == "AML",1,0),
                   phase_cr1 = ifelse(bmt$Phase == "CR1",1,0),
                   phase_cr2 = ifelse(bmt$Phase == "CR2",1,0),
                   phase_cr3 = ifelse(bmt$Phase == "CR3",1,0),
                   source_PB = ifelse(bmt$Source == "PB",1,0))
#手动设置哑变量
cov1
mod1 <- crr(bmt$ftime,bmt$Status,cov1,failcode = 1,cencode = 0)
#构建多因素竞争风险模型
summary(mod1)

install.packages("aod")
library(aod)
wald.test(mod1$var,mod1$coef,Terms = 4:6)
#对模型回归系数进行假设检验


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值