#第7章 Fine-Grey检验与竞争风险模型 ####
#也是用于处理生存资料
#7.1 Fine-Grey检验 ####
install.packages("cmprsk")
install.packages("splines")
library(foreign) #读取文件
library(survival) #生存分析包
library(cmprsk) #竞争风险包
library(splines)
bmt <- read.csv("D:/BaiduNetdiskDownload/bmtcrr.csv")
#数据框bmt变量解释:sex性别,D疾病类型(ALL?AML?),Phase阶段,Age年龄,
#Source移植方式(骨髓移植+血液移植?血液移植?),ftime复发时间
#Status结局(0删失,1复发,2移植相关死亡)
head(bmt)
bmt$D <- as.factor(bmt$D)
attach(bmt)
crmod <- cuminc(bmt$ftime,bmt$Status,bmt$D)
#纳入生存时间ftime和生存状态Status,比较不同组别发生1事件或2事件的可能性是否相等
crmod
plot(crmod,xlab = "月",ylab = "CIF",col = c("red","blue","orange","forestgreen"))
#读图可知,ALL比AML的复发风险高,AML比ALL的移植相关死亡风险高
#但是P值>0.05,没有统计学意义,所以上述结论并不成立
#7.2 竞争风险模型 ####
cov1 <- data.frame(age = bmt$Age,sex_F = ifelse(bmt$Sex == "F",1,0),
dia_AML = ifelse(bmt$D == "AML",1,0),
phase_cr1 = ifelse(bmt$Phase == "CR1",1,0),
phase_cr2 = ifelse(bmt$Phase == "CR2",1,0),
phase_cr3 = ifelse(bmt$Phase == "CR3",1,0),
source_PB = ifelse(bmt$Source == "PB",1,0))
#手动设置哑变量
cov1
mod1 <- crr(bmt$ftime,bmt$Status,cov1,failcode = 1,cencode = 0)
#构建多因素竞争风险模型
summary(mod1)
install.packages("aod")
library(aod)
wald.test(mod1$var,mod1$coef,Terms = 4:6)
#对模型回归系数进行假设检验
丁香园临床预测模型课程 第7章
最新推荐文章于 2025-02-14 18:59:59 发布