题目背景
红太阳幼儿园的小朋友们开始分糖果啦!
题目描述
红太阳幼儿园有 n n n 个小朋友,你是其中之一。保证 n ≥ 2 n \ge 2 n≥2。
有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。
由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 R R R 块糖回去。
但是拿的太少不够分的,所以你至少要拿 L L L 块糖回去。保证 n ≤ L ≤ R n \le L \le R n≤L≤R。
也就是说,如果你拿了 k k k 块糖,那么你需要保证 L ≤ k ≤ R L \le k \le R L≤k≤R。
如果你拿了 k k k 块糖,你将把这 k k k 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 n n n 块糖果,幼儿园的所有 n n n 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 n n n 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励。
作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 n , L , R n, L, R n,L,R,并输出你最多能获得多少作为你搬糖果的奖励的糖果数量。
输入格式
输入一行,包含三个正整数 n , L , R n, L, R n,L,R,分别表示小朋友的个数、糖果数量的下界和上界。
输出格式
输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。
样例 #1
样例输入 #1
7 16 23
样例输出 #1
6
样例 #2
样例输入 #2
10 14 18
样例输出 #2
8
样例 #3
样例输入 #3
见附件中的 candy/candy3.in。
样例输出 #3
见附件中的 candy/candy3.ans。
提示
【样例解释 #1】
拿 k = 20 k = 20 k=20 块糖放入篮子里。
篮子里现在糖果数 20 ≥ n = 7 20 \ge n = 7 20≥n=7,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 13 ≥ n = 7 13 \ge n = 7 13≥n=7,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 6 < n = 7 6 < n = 7 6<n=7,因此这 6 6 6 块糖是作为你搬糖果的奖励。
容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 6 6 6 块(不然,篮子里的糖果数量最后仍然不少于 n n n,需要继续每个小朋友拿一块),因此答案是 6 6 6。
【样例解释 #2】
容易发现,当你拿的糖数量 k k k 满足 14 = L ≤ k ≤ R = 18 14 = L \le k \le R = 18 14=L≤k≤R=18 时,所有小朋友获得一块糖后,剩下的 k − 10 k - 10 k−10 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 k = 18 k = 18 k=18 块是最优解,答案是 8 8 8。
【数据范围】
| 测试点 | n ≤ n \le n≤ | R ≤ R \le R≤ | R − L ≤ R - L \le R−L≤ |
|---|---|---|---|
| 1 1 1 | 2 2 2 | 5 5 5 | 5 5 5 |
| 2 2 2 | 5 5 5 | 10 10 10 | 10 10 10 |
| 3 3 3 | 10 3 {10}^3 103 | 10 3 {10}^3 103 | 10 3 {10}^3 103 |
| 4 4 4 | 10 5 {10}^5 105 | 10 5 {10}^5 105 | 10 5 {10}^5 105 |
| 5 5 5 | 10 3 {10}^3 103 | 10 9 {10}^9 109 | 0 0 0 |
| 6 6 6 | 10 3 {10}^3 103 | 10 9 {10}^9 109 | 10 3 {10}^3 103 |
| 7 7 7 | 10 5 {10}^5 105 | 10 9 {10}^9 109 | 10 5 {10}^5 105 |
| 8 8 8 | 10 9 {10}^9 109 | 10 9 {10}^9 109 | 10 9 {10}^9 109 |
| 9 9 9 | 10 9 {10}^9 109 | 10 9 {10}^9 109 | 10 9 {10}^9 109 |
| 10 10 10 | 10 9 {10}^9 109 | 10 9 {10}^9 109 | 10 9 {10}^9 109 |
对于所有数据,保证 2 ≤ n ≤ L ≤ R ≤ 10 9 2 \le n \le L \le R \le {10}^9 2≤n≤L≤R≤109。
那么这道题的简要题意就是:
给你n,L,R,让你在L到R之间找一个ans使得n%ans最大,输出n%ans。
那么我们根据数据发现,如果你只用暴力枚举的方法来做的话,最多也只能得到70pts,怎么办?
我们如果想取最多的糖果的话,可以取n - 1块糖果。当然很多时候我们一定做不到这么贪心。那么就说明,在l到r之间,数越大,模n的值就越大。所以我们对于这种情况,直接拿r块糖果,结果一定最优。其他情况用最贪心的方法取就对了。
AC代码
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, l, r;
cin >> n >> l >> r;
int i = l / n;
if ((i + 1) * n <= r) {
cout << n - 1;
} else {
cout << r % n;
}
return 0;
}
1050

被折叠的 条评论
为什么被折叠?



