【数据结构】树状数组

文章详细介绍了树状数组的概念,包括低字节运算(lowbit)的定义和计算,以及树状数组在维护序列前缀和中的应用。文章通过实例解释了树状数组的单点修改、区间查询和区间修改操作,并提到了在需要同时支持区间查询和修改的情况下,线段树可能是更好的选择。
摘要由CSDN通过智能技术生成

都说树状数组思路很难,那我们今天就给他讲个透彻!
前置知识:lowbit 运算
lowbit 的作用就是返回一个数从右往左数的第一个1与他前面所有的0所组成的十进制数
举个例子:
114 114 114这个数转换为二进制为 1110010 1110010 1110010,而它从右往左数的第一个 1 1 1在第二位,将这位右边的所有 0 0 0放出来为 10 10 10,转换为十进制为 2 2 2,所以 lowbit(114) 返回 2 2 2
lowbit的代码:

int lowbit(int x) {
	return x & -x;
}

树状数组的思路

树状数组的基本作用就是维护一个序列的前缀和,如下图:
在这里插入图片描述
我们先把每个节点下标的二进制数写出来,如下:
在这里插入图片描述
我们可以发现,树状数组有如下性质(注意以下的 xlowbit(x) 均为十进制数):

  1. 每个内部节点 c[x] 保存的是以它为根的子树中所有叶节点的和
  2. 每个内部节点 c[x] 的子节点个数为 lowbit(x) 的位数
  3. 除根节点外,每个内部节点 c[x] 的父节点为 c[x + lowbit(x)](下面会经常用到)
  4. 树的深度为 O ( l o g   n ) O(log \ n) O(log n)

接下来我们看看如何对树状数组进行操作

树状数组的操作


单点修改

单点修改:把数列中第 x x x 个数加 d d d
因为我们在子节点增加的值需要向上传递,所以我们这么写修改:

void add(int x, int c) {
	for (int i = x; i <= n; i += lowbit(i)) tr[i] += c;
	//	每个内部节点 tr[i] 的父节点为 tr[i + lowbit(i)]
}

初始化树状数组

建立一个全为 0 0 0 的数组 tr , 然后对每个位置 x 执行 add(x, a[x]) 即可。

for (int i = 1; i <= n; i ++ ) add(i, a[i]);

区间查询

区间查询:求区间的前 x x x 项的和(也就是前缀和)
查询的时候我们就每次减掉 lowbit(i) 再相加就可以啦

int sum(int x) {
    int res = 0;
    for (int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

还有另外一种:求数列中第 l ∼ r l \sim r lr 个数的和,这时候我们就可与利用前缀和的性质,即 s u m [ l , r ] = s u m [ 1 , r ] − s u m [ 1 , l − 1 ] sum[l, r] = sum[1, r] - sum[1, l - 1] sum[l,r]=sum[1,r]sum[1,l1]

cout << sum(r) - sum(l - 1) << '\n';

区间修改

区间查询:把数列中第 l ∼ r l \sim r lr 个数都加 d d d
对于区间查询这个操作,我们需要用树状数组维护原序列 a 的差分数组 b,如下:

for (int i = 1; i <= n; i ++ ) add(i, a[i] - a[i - 1]);	//	add函数在上面有

由于差分数组的性质,我们想要将区间 [ l , r ] [l, r] [l,r] 加上 d d d ,就相当于 a d d ( l , d ) add(l, d) add(l,d) a d d ( r + 1 , − d ) add(r + 1, -d) add(r+1,d)

add(l, d), add(r + 1, -d);

单点查询

a [ x ] a[x] a[x] 就相当于求 b [ 1 ] + b [ 2 ] + b [ 3 ] + . . . + b [ x ] b[1] + b[2] + b[3] + ... + b[x] b[1]+b[2]+b[3]+...+b[x],也就是树状数组 1 ∼ x 1 \sim x 1x 的和,直接使用上面的 sum 函数即可

int sum(int x) {
    int res = 0;
    for (int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

例题

给定长度为 N N N 的数列 A A A,然后输入 M M M 行操作指令。

第一类指令形如 C l r d,表示把数列中第 l ∼ r l \sim r lr 个数都加 d d d

第二类指令形如 Q x,表示询问数列中第 x x x 个数的值。

对于每个询问,输出一个整数表示答案。

输入格式

第一行包含两个整数 N N N M M M

第二行包含 N N N 个整数 A [ i ] A[i] A[i]

接下来 M M M 行表示 M M M 条指令,每条指令的格式如题目描述所示。

输出格式

对于每个询问,输出一个整数表示答案。

每个答案占一行。

数据范围

1 ≤ N , M ≤ 1 0 5 1 \le N,M \le 10^5 1N,M105,
∣ d ∣ ≤ 10000 |d| \le 10000 d10000,
∣ A [ i ] ∣ ≤ 1 0 9 |A[i]| \le 10^9 A[i]109

输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
Q 4
Q 1
Q 2
C 1 6 3
Q 2
输出样例:
4
1
2
5

这题就属于上面讲解树状数组维护差分数组那一类的,代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>

using namespace std;

typedef long long ll;

const int N = 100010;

int n, m;
int a[N];
ll tr[N];

int lowbit(int x) {
	return x & -x;
}

void add(int x, int c) {
	for (int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

ll sum(int x) {
	ll sum = 0;
	for (int i = x; i; i -= lowbit(i)) sum += tr[i];
	return sum;
}

int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
	
	for (int i = 1; i <= n; i ++ ) add(i, a[i] - a[i - 1]);
	
	while (m -- ) {
		char op[2];
		int l, r, d;
		scanf("%s%d", op, &l);
		if (*op == 'C') {
			scanf("%d%d", &r, &d);
			add(l, d), add(r + 1, -d);
		} else 
			printf("%lld\n", sum(l));
	}
	
	return 0;
}

最后说一句:对于那些需要即需要区间查询又需要区间修改的题,还是建议直接使用线段树,可以参考一下我的线段树讲解:C++线段树详解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>