都说树状数组思路很难,那我们今天就给他讲个透彻!
前置知识:lowbit 运算
lowbit 的作用就是返回一个数从右往左数的第一个1与他前面所有的0所组成的十进制数
举个例子:
114
114
114这个数转换为二进制为
1110010
1110010
1110010,而它从右往左数的第一个
1
1
1在第二位,将这位右边的所有
0
0
0放出来为
10
10
10,转换为十进制为
2
2
2,所以 lowbit(114) 返回
2
2
2。
lowbit的代码:
int lowbit(int x) {
return x & -x;
}
树状数组的思路
树状数组的基本作用就是维护一个序列的前缀和,如下图:

我们先把每个节点下标的二进制数写出来,如下:

我们可以发现,树状数组有如下性质(注意以下的 x 与 lowbit(x) 均为十进制数):
- 每个内部节点
c[x]保存的是以它为根的子树中所有叶节点的和 - 每个内部节点
c[x]的子节点个数为lowbit(x)的位数 - 除根节点外,每个内部节点
c[x]的父节点为c[x + lowbit(x)](下面会经常用到) - 树的深度为 O ( l o g n ) O(log \ n) O(log n)
接下来我们看看如何对树状数组进行操作
树状数组的操作
单点修改
单点修改:把数列中第
x
x
x 个数加
d
d
d
因为我们在子节点增加的值需要向上传递,所以我们这么写修改:
void add(int x, int c) {
for (int i = x; i <= n; i += lowbit(i)) tr[i] += c;
// 每个内部节点 tr[i] 的父节点为 tr[i + lowbit(i)]
}
初始化树状数组
建立一个全为
0
0
0 的数组 tr , 然后对每个位置 x 执行 add(x, a[x]) 即可。
for (int i = 1; i <= n; i ++ ) add(i, a[i]);
区间查询
区间查询:求区间的前
x
x
x 项的和(也就是前缀和)
查询的时候我们就每次减掉 lowbit(i) 再相加就可以啦
int sum(int x) {
int res = 0;
for (int i = x; i; i -= lowbit(i)) res += tr[i];
return res;
}
还有另外一种:求数列中第 l ∼ r l \sim r l∼r 个数的和,这时候我们就可与利用前缀和的性质,即 s u m [ l , r ] = s u m [ 1 , r ] − s u m [ 1 , l − 1 ] sum[l, r] = sum[1, r] - sum[1, l - 1] sum[l,r]=sum[1,r]−sum[1,l−1]
cout << sum(r) - sum(l - 1) << '\n';
区间修改
区间查询:把数列中第
l
∼
r
l \sim r
l∼r 个数都加
d
d
d 。
对于区间查询这个操作,我们需要用树状数组维护原序列 a 的差分数组 b,如下:
for (int i = 1; i <= n; i ++ ) add(i, a[i] - a[i - 1]); // add函数在上面有
由于差分数组的性质,我们想要将区间 [ l , r ] [l, r] [l,r] 加上 d d d ,就相当于 a d d ( l , d ) add(l, d) add(l,d)、 a d d ( r + 1 , − d ) add(r + 1, -d) add(r+1,−d)。
add(l, d), add(r + 1, -d);
单点查询
求
a
[
x
]
a[x]
a[x] 就相当于求
b
[
1
]
+
b
[
2
]
+
b
[
3
]
+
.
.
.
+
b
[
x
]
b[1] + b[2] + b[3] + ... + b[x]
b[1]+b[2]+b[3]+...+b[x],也就是树状数组
1
∼
x
1 \sim x
1∼x 的和,直接使用上面的 sum 函数即可
int sum(int x) {
int res = 0;
for (int i = x; i; i -= lowbit(i)) res += tr[i];
return res;
}
例题
给定长度为 N N N 的数列 A A A,然后输入 M M M 行操作指令。
第一类指令形如 C l r d,表示把数列中第
l
∼
r
l \sim r
l∼r 个数都加
d
d
d。
第二类指令形如 Q x,表示询问数列中第
x
x
x 个数的值。
对于每个询问,输出一个整数表示答案。
输入格式
第一行包含两个整数 N N N 和 M M M。
第二行包含 N N N 个整数 A [ i ] A[i] A[i]。
接下来 M M M 行表示 M M M 条指令,每条指令的格式如题目描述所示。
输出格式
对于每个询问,输出一个整数表示答案。
每个答案占一行。
数据范围
1
≤
N
,
M
≤
1
0
5
1 \le N,M \le 10^5
1≤N,M≤105,
∣
d
∣
≤
10000
|d| \le 10000
∣d∣≤10000,
∣
A
[
i
]
∣
≤
1
0
9
|A[i]| \le 10^9
∣A[i]∣≤109
输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
Q 4
Q 1
Q 2
C 1 6 3
Q 2
输出样例:
4
1
2
5
这题就属于上面讲解树状数组维护差分数组那一类的,代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
const int N = 100010;
int n, m;
int a[N];
ll tr[N];
int lowbit(int x) {
return x & -x;
}
void add(int x, int c) {
for (int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}
ll sum(int x) {
ll sum = 0;
for (int i = x; i; i -= lowbit(i)) sum += tr[i];
return sum;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) add(i, a[i] - a[i - 1]);
while (m -- ) {
char op[2];
int l, r, d;
scanf("%s%d", op, &l);
if (*op == 'C') {
scanf("%d%d", &r, &d);
add(l, d), add(r + 1, -d);
} else
printf("%lld\n", sum(l));
}
return 0;
}
最后说一句:对于那些需要即需要区间查询又需要区间修改的题,还是建议直接使用线段树,可以参考一下我的线段树讲解:C++线段树详解。
文章详细介绍了树状数组的概念,包括低字节运算(lowbit)的定义和计算,以及树状数组在维护序列前缀和中的应用。文章通过实例解释了树状数组的单点修改、区间查询和区间修改操作,并提到了在需要同时支持区间查询和修改的情况下,线段树可能是更好的选择。
4621

被折叠的 条评论
为什么被折叠?



