【基础算法】前缀和

前缀和

现在有一道题:

输入一个长度为 n n n 的整数序列。

接下来再输入 m m m 个询问,每个询问输入一对 l , r l, r l,r

对于每个询问,输出原序列中从第 l l l 个数到第 r r r 个数的和。

数据范围

1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn
1 ≤ n , m ≤ 100000 1 \le n,m \le 100000 1n,m100000
− 1000 ≤ 数列中元素的值 ≤ 1000 -1000 \le 数列中元素的值 \le 1000 1000数列中元素的值1000

这种题大家一看就知道打暴力,确实是个好方法

在这里插入图片描述

那么我们该如何优化它呢?
我们维护一个名为 s s s 的前缀和数组,且 s [ i ] = ∑ j = 1 i a [ j ] s[i] = \sum\limits _ {j = 1}^{i} a[j] s[i]=j=1ia[j],如下:

for (int i = 1; i <= n; ++ i ) s[i] = s[i - 1] + a[i];

如果我们维护的序列是 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 的话,那么我们的前缀和数组为 1 , 3 , 6 , 10 , 15 , 21 , 28 , 36 , 45 , 55 1,3,6,10,15,21,28,36,45,55 1,3,6,10,15,21,28,36,45,55 ,那我们该如何利用前缀和数组的性质求和呢?
可以看下面的图:
在这里插入图片描述
假如说我们要求 [ l , r ] [l, r] [l,r] 数值的和,我们只需要将 s [ r ] s[r] s[r] (红色部分)减去 s [ l − 1 ] s[l - 1] s[l1] (蓝色部分)即可。代码:

printf("%d\n", s[r] - s[l - 1]);

完整代码:

#include <iostream>
#include <cstring>
using namespace std;
const int N = 100010;
int n, m;
int a[N];
int s[N];
int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; ++ i ) scanf("%d", &a[i]);
    for (int i = 1; i <= n; ++ i ) s[i] = s[i - 1] + a[i];
    while ( m -- ) {
        int l, r;
        scanf("%d%d", &l, &r);
        printf("%d\n", s[r] - s[l - 1]);
    }
    return 0;
}

二维前缀和

题目:

输入一个 n n n m m m 列的整数矩阵,再输入 q q q 个询问,每个询问包含四个整数 x 1 , y 1 , x 2 , y 2 x_1, y_1, x_2, y_2 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

数据范围

1 ≤ n , m ≤ 1000 1 \le n,m \le 1000 1n,m1000
1 ≤ q ≤ 200000 1 \le q \le 200000 1q200000
1 ≤ x 1 ≤ x 2 ≤ n 1 \le x_1 \le x_2 \le n 1x1x2n
1 ≤ y 1 ≤ y 2 ≤ m 1 \le y_1 \le y_2 \le m 1y1y2m
− 1000 ≤ 矩阵内元素的值 ≤ 1000 -1000 \le 矩阵内元素的值 \le 1000 1000矩阵内元素的值1000

二维前缀和,可以用来求一个矩阵里人任意一个子矩阵内数的和。
我们用 s [ I ] [ J ] s[I][J] s[I][J] 表示 ∑ i = 1 I ∑ j = 1 J a [ i ] [ j ] \sum\limits_{i = 1}^{I} \sum\limits_{j = 1}^{J} a[i][j] i=1Ij=1Ja[i][j]
所以 s [ I ] [ J ] (绿色部分) = s [ I − 1 ] [ J ] (蓝色部分) + s [ I ] [ J − 1 ] (红色部分) − s [ I − 1 ] [ J − 1 ] (紫色部分) + a [ I ] [ J ] s[I][J](绿色部分) = s[I - 1][J](蓝色部分) + s[I][J - 1](红色部分) - s[I - 1][J - 1] (紫色部分)+ a[I][J] s[I][J](绿色部分)=s[I1][J](蓝色部分)+s[I][J1](红色部分)s[I1][J1](紫色部分)+a[I][J]
在这里插入图片描述
查询的话,我们将上面所有颜色的框改一下位置就好了;假如我们要求 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2) 的和,即: s [ x 2 ] [ y 2 ] − s [ x 1 − 1 ] [ y 2 ] − s [ x 2 ] [ y 1 − 1 ] + s [ x 1 − 1 ] [ y 1 − 1 ] s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1] s[x2][y2]s[x11][y2]s[x2][y11]+s[x11][y11]
代码:

#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N];
int s[N][N];
int main() {
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; ++ i ) 
        for (int j = 1; j <= m; ++ j ) 
            scanf("%d", &a[i][j]);
    for (int i = 1; i <= n; ++ i ) 
        for (int j = 1; j <= m; ++ j ) 
            s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
    while ( q -- ) {
        int x1, y1, x2, y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
    }
    return 0;
}

小学六年级,最后一个六一辣
4247b82b-6f44-4c83-82ae-f84b5e8c0e91

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>