理论部分:
平常接触最多的就是回归分析了,统计学中的回归分析主要强调的是解释变量与被解释变量之间的相关关系,并在假设检验的基础上进行参数估计,往往重视这个方程是否显著,各个参数是否显著。机器学习中的回归有点不同,把解释变量看成是一种输入,被解释变量视为一种输出,更加强调找到最优函数,没有假设,而是用训练数据来提取信息,再由测试数据验证结果,哪个模型的平均残差小,就选择哪个模型。(个人的小小见解)
下面是我在学习过程中的笔记:(由于本人有点懒~~就直接把手写的扫描版搬上来啦)
实践部分:
此处,梯度下降法是用来解决回归中未知参数问题的。下面是有关梯度下降法的练习,我只是对一些不懂的地方进行了注释,原创请看如下链接。
https://datawhalechina.github.io/leeml-notes/#/chapter4/chapter4
'''
练习梯度下降法:
1)