20221211为论文添砖加瓦(1)

文章:

A survey on machine learning methods for churn prediction

Louis Geiler, Séverine Affeldt, Mohamed Nadif. A survey on machine learning methods for churn prediction. International Journal of Data Science and Analytics, Springer Verlag, 2022, 14 (3), pp.217- 242. ff10.1007/s41060-022-00312-5ff. ffhal-03824873f

对于流失预测数据的研究流程:

 

        文章重点关注机器学习算法与采样方法的结合,在多个公开数据集中进行比较。

实验结果:特定采样方法下不同数据集在不同机器学习模型下的AUC值(蓝色框方法可换);

 

1.结果揭示机器学习模型之间的互补行为*****;

 

2.通过Nemenyi测试和对应分析的可视化来总结实验结果,展现不同数据集与机器学习方法之间的关系*****;(也可以做同一数据集,采样方法与机器学习方法的对应关系)

 

 

3.最终指出能够成功应用于各种流失类数据集的流失分析思路。

集成方法与非集成方法的比较:

采样方法与机器学习算法的结合:

每个数据集的研究思路:

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值