机器学习
文章平均质量分 50
Mia~~
坚持本身就很有意义,不是吗?
展开
-
机器学习——总结
第一次参加Datawhale的航海之旅,有伙伴一起努力的感觉太棒了。虽然大家都不认识,还是觉得那一段时间挺有意义的。没有躺平、没有荒废时光、平平淡淡地生活着本身不就很有意义嘛!我习惯于将学到的知识及时记录在笔记本上,却很少翻看,好像写完就记住一样,过段时间就什么都忘记了。总是想高效学习,可学过的都不记得了,新学的也注定会忘记,还谈何高效呢!不过,打卡和分享好像可以让我常常看看这些学过的知识点(还有看看阅读量(^_^),真的激发了我的分享欲)。新一年的开端是学习、学习、学习。...原创 2022-01-23 16:12:34 · 642 阅读 · 0 评论 -
机器学习——卷积神经网络(CNN)
CNN可以看作深度学习的进一步扩展,在深度学习的基础上改变神经网络的结构以及尽量减少参数,抓住关键特征。这样的CNN主要用于影像识别。具有以下三个属性的任务即可以使用CNN:1)观测图片中的某些模式;2)这些模式在每张图片中的位置不同;3)二次抽样不会影响观察对象。CNN框架中的convolution就反映了前两个属性;max pooling反映了第三个属性。之后分别从convolution、max pooling、flatten三个方面具体介绍相关步骤。从CNN中我们可以学到什么?CNN应...原创 2022-01-21 21:55:24 · 792 阅读 · 0 评论 -
机器学习——网络设计的技巧
这次任务是对深度学习框架的补充。从改善梯度下降法开始,梯度下降法失效的原因可能是gradient(损失函数对未知参数的一阶导)接近0,由此会产生critical point,其中包含常说的local minima、local maxima、saddle point or very slow at the plateau。实际上local points 很少见,而通过特征根和特征向量可以识别saddle point ,再选择其中负的特征根和其对应的特征向量更新参数,我们就可以避免saddle...原创 2022-01-19 20:14:22 · 759 阅读 · 0 评论 -
机器学习——深度学习介绍和反向传播
深度学习是机器学习中的一种方法,是一种非线性模型。因此,深度学习依然遵循着机器学习的三个步骤。第一个步骤是定义一列函数,深度学习中用神经网络来定义;第二个步骤是模型评估,通过计算损失函数决定,深度学习需要用交叉熵的算法计算局部损失,之后再将所有局部损失加和计算总体损失;第三个步骤是选择最优函数,往往用梯度下降法,由于深度学习涉及的参数繁多,故采用反向传播计算。笔记:...原创 2022-01-16 12:01:41 · 376 阅读 · 0 评论 -
机器学习——误差和梯度下降法
这节是对上一节知识点的进一步扩展。如何选择模型呢?误差越小越好吗?不是的!这里的误差的来源有偏差和方差(小声叨叨,这不就是MSE嘛),两种来源的误差对应着两种数据拟合问题,过拟合和欠拟合。如果一个模型可以在数据集的基础上减少这两种误差就完美了。接下来就采用N折交叉验证,平均误差最小的模型即是我们想要的模型。如何求解模型中的未知参数?梯度下降法!学习率如何确定,用Adagrad算法;怎么提高梯度下降的效率,随机梯度下降法;如何更快收敛,特征放缩。最后还有用泰勒公式推导梯度下降法的公式。回答...原创 2022-01-14 19:22:51 · 588 阅读 · 0 评论 -
机器学习——回归
理论部分:平常接触最多的就是回归分析了,统计学中的回归分析主要强调的是解释变量与被解释变量之间的相关关系,并在假设检验的基础上进行参数估计,往往重视这个方程是否显著,各个参数是否显著。机器学习中的回归有点不同,把解释变量看成是一种输入,被解释变量视为一种输出,更加强调找到最优函数,没有假设,而是用训练数据来提取信息,再由测试数据验证结果,哪个模型的平均残差小,就选择哪个模型。(个人的小小见解)下面是我在学习过程中的笔记:(由于本人有点懒~~就直接把手写的扫描版搬上来啦)实...原创 2022-01-12 18:59:27 · 2455 阅读 · 0 评论
分享